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Introduction

zELDA [redshift (z) Estimator using Line profiles of Distant lyman-Alpha emitters], a code to understand Lyman-alpha emission.


Authors


Siddhartha Gurung Lopez

Max Gronke

Alvaro Orsi

Silvia Bonoli

Shun Saito





Publication links

zELDA paper:


ADS   : https://ui.adsabs.harvard.edu/abs/2021arXiv210901680G/abstract

arXiv : https://arxiv.org/abs/2109.01680




zELDA is based on its previous version, FLaREON. Please, if you used zELDA in your project, cite also FLaREON:




ADS   : http://adsabs.harvard.edu/abs/2018arXiv181109630G

arXiv : https://arxiv.org/abs/1811.09630





Origins and motivation

The main goal of zELDA is to provide to the scientific community a common tool to analyze and model Lyman-alpha line profiles.

zELDA is a publicly available python package based on a RTMC (Orsi et al. 2012) and FLaREON (Gurung-Lopez 2019) able to fit observed Lyman-alpha spectrum and to predict large amounts of Lyman alpha line profiles and escape fractions with high accuracy. We designed this code hoping that it helps researches all over the world to get a better understanding of the Universe. In particular zELDA is divided in two main functionalites:


	Mocking Lyman-alpha line profiles. Due to the Lyman alpha Radiative Transfer large complexity, the efforts to understand Lyman-alpha emission moved from pure analytic studies to the so-called radiative transfer Monte Carlo (RTMC) codes that simulate Lyman alpha photons in arbitrary gas geometries. These codes provide useful information about the fraction of photons that manage to escape and the resulting Lyman alpha line profiles. The RTMC approach has probed very successful in reproducing the observed properties of Lyman-alpha emitters. zELDA contains several data grids of LyaRT, the RTMC described in Orsi et al. 2012 (https://github.com/aaorsi/LyaRT), from which Lyman-alpha line profiles are computed using lineal interpolation. This methodology allow us to predict line profiles with a high accuracy at a low computational cost. In fact, the time used by zELDA to predict a single line profiles y usually eight orders of magnitud smaller than the full radiative transfer analysis done by LyaRT. Additionally, in order to mock observed Lyman-alpha spectrum, zELDA also includes routines to mimik the artifacts induced by observations in the line profiles, such a finite spectral resolution or the wavelength binning.


	Fitting observed Lyman-alpha line profiles. The main update from FLaREON to zELDA is the inclusion of several fitting algotirhms to model observed Lyman-alhpa line profiles. On the basics, zELDA uses mock Lyman-alpha line profiles to fit observed spectrums in two main phasions :






	Monte Carlo Markov Chain : This is the most classic approach taken in the literaute (e.g. Gronke et al. 2017). zELDA implementation is powered by the public code emcee (https://emcee.readthedocs.io/en/stable/) by Daniel Foreman-Mackey et al. (2013).


	Deep learning : zELDA is the first open source code that uses machine learning to fit Lyman-alpha line profiles. zELDA includes some trained deep neural networks that predicts the best inflow/outflow model and redshift for a given observed line profile. This approach is about 3 orders of magnitud faster than the MCMC analysis and provides similar accuracies. This methodology will prove decesive in the upcoming years when tens of thousands of Lyman-alpha line profiles will be measure by instruments such as the James Webb Space Telescope. The neural network engine powering zELDA is scikitlearn (https://scikit-learn.org/stable/).











            

          

      

      

    

  

    
      
          
            
  
Installation

zELDA, installation is divided in two blocks. First you will need to install the python package containing all the scritps. With this you can already use the Deep Neural Network methodologies to extract information from observed Lyman-alpha line profiles. The second block contains all the grids computed from LyaRT. These are necessary in order to compute line profiles and escape fractions for all the outflow geometries. As a consequence, the second block is mandatory to make MCMC analysis.


Python package

The simplest way of installing zELDA’s scripts is via pip:

$ pip install Lya_zelda





An alternative method to install zELDA’scripts is downloading the code from GitHub:

$ git clone https://github.com/sidgurun/Lya_zelda.git
$ cd Lya_zelda
$ pip install .





Remember that you can also add the tag --user ,  if necessary.

zELDA uses a specific version of numpy and sci-kit-learn. This means that most likely pip will try to change to those versions when you install zELDA. If you want to avoid this you can create a virtual environment, which is always useful to tests installations.



LyaRT data grids

Next, let’s download the data grids necessary for generating mock Lyman-alpha line profiles as escape fractions. The data is stored at https://zenodo.org/record/4733518#.YJjw_y_Wf0c . Download the Grids.zip file. You can do this in different ways. The recomended method is using the commamnd wget or curl, which should be more stable. For example, for downloawing it with curl, you can do:

$ curl --cookie zenodo-cookies.txt "https://zenodo.org/record/4733518/files/Grids.zip?download=1" --output Grids.zip





The download might take a while, as it is about 13Gb, so grab your fauvorite snack and be patient =D .

Other way of getting the data is going to the zenodo  webpage and download it through your internet borwser. As this is a large file, if you brower is a little bit unstable the download might stop in halfway, causing you to restart the download again.

Once you have the Grids.zip file, unzip it in the place that you want to keep it.

In order to compute line profiles and escape fraction you will need to indicate zELDA the location of grids by doing

>>> import Lya_zelda as Lya

>>> your_grids_location = '/This/Folder/Contains/The/Grids/'

>>> Lya.funcs.Data_location = your_grids_location





where your_grids_location is a string with the place where you have stored the grids. If you run the ls command you should see something like this:

$ ls /This/Folder/Contains/The/Grids/

Dictonary_Bicone_X_Slab_Grid_Lines_In_Bicone_False.npy
.
.
.
GRID_data__V_29_logNH_19_logta_9_EW_20_Wi_31.npy
GRID_data__V_29_logNH_19_logta_9_EW_8_Wi_9.npy
GRID_info__V_29_logNH_19_logta_9_EW_20_Wi_31.npy
GRID_info__V_29_logNH_19_logta_9_EW_8_Wi_9.npy
.
.
.
finalized_model_wind_f_esc_Tree_f_esc.sav





You can check if you have set properly the directoy by loading a grid after setting Lya.funcs.Data_location, for example:

>>> print( Lya.Check_if_DATA_files_are_found() )





If the location has been properly set the command should return 1. If the data files are not found, then 0 is return. This function will also tell you the current value of Lya.funcs.Data_location. If the funtions returns 0 make sure than running ls gives you the expected output (see just above).



Partial installation for testing

This section is optional and not required for the full installation. If you have done the previous steps you don’t need to go through this.

The full zELDA (grids+code) is about 13GB of storage. There could be the case in which you might want to test the code but not install it completely. If this is the case, you can download a lighter version of the grid for the Thin Shell geoemtry used to fit observed data. Remember that once you have installed the scripts by pip (above), you can already make the neural network analysis of the line profiles, there is no need of the line profiles grids. However, if you want to plot the line profile given by the predicted outflow propeties you will need the grid of line profiles.

Go to the location where you want to store the test grids. You can download the lighter version of the grids with

$ curl -0 --output GRID_data__V_29_logNH_19_logta_9_EW_8_Wi_9.npy  https://zenodo.org/record/4890276/files/GRID_data__V_29_logNH_19_logta_9_EW_8_Wi_9.npy
$ curl -0 --output GRID_info__V_29_logNH_19_logta_9_EW_8_Wi_9.npy  https://zenodo.org/record/4890276/files/GRID_info__V_29_logNH_19_logta_9_EW_8_Wi_9.npy





Done! This files should be less than 2GB.

Let’s see how you can load them.

>>> import Lya_zelda as Lya

>>> your_grids_location = '/This/Folder/Contains/The/Grids/'

>>> Lya.funcs.Data_location = your_grids_location





where your_grids_location is a string with the place where you have stored the grids. If you run the ls command you should see something like this:

$ ls /This/Folder/Contains/The/Grids/
GRID_data__V_29_logNH_19_logta_9_EW_8_Wi_9.npy
GRID_info__V_29_logNH_19_logta_9_EW_8_Wi_9.npy





You can check if you have set properly the directoy by loading a grid after setting Lya.funcs.Data_location, for example:

>>> Geometry = 'Thin_Shell_Cont'

>>> LyaRT_Grid = Lya.load_Grid_Line( Geometry , MODE='LIGHT' )





If this last command worked, then the grids were found correctly and you can start using this line profile grid to test the creation of mock line profiles, for example. However, you won’t be able to compute escape fractions and the line profile for the other gas geometries until you install the full package. Also, the grid you have just downlaoded is less heavy because there are fewer bins, which means that the nodes are more spaced. This means that the line profiles computed from this grid will have in general a lower accuracy in comparison with using the full grid. Therefore, for science you sould use the full grid, not this one.





            

          

      

      

    

  

    
      
          
            
  
About the LyaRT data grids

Here we explain a little bit the data grid from LyaRT, the Radiative Monte Carlo Code described in Orsi et al. 2012 ( https://github.com/aaorsi/LyaRT ). These grids are the pillars of zELDA, so it is good to familiarized with them.


Getting started

Let’s start by loading zELDA and setting the location of the LyaRT grids:

>>> import Lya_zelda as Lya

>>> your_grids_location = '/This/Folder/Contains/The/Grids/'

>>> Lya.funcs.Data_location = your_grids_location





where /This/Folder/Contains/The/Grids/ is the place where you store the LyaRT data grids, as shown in the Installation section.



Line profile LyaRT data grids

Let’s load a data grid to start working. In particular we are going to load the one for the ‘Thin_Shell’ geometry. This geometry has 3 variables for the outflow configuration: expansion velocity, HI column density and dust optical depth.

>>> LyaRT_Grid = Lya.load_Grid_Line( 'Thin_Shell' )





LyaRT_Grid is a python dictionary containing all the data necessary for the interpolation. Let’s look to the keys

>>> print( LyaRT_Grid.keys() )

dict_keys(['logNH_Arr', 'logta_Arr', 'Grid', 'x_Arr', 'V_Arr'])





The variables ‘V_Arr’, ‘logNH_Arr’ and ‘logta_Arr’ are 1-D numpy arrays that contains the values in which the grid is evaluated for the expansion velocity, the logarithmic of the HI column density and  the logarithmic of the dust optical depth respectively. If you want to check where the grid is evaluated you can do

>>> print( 'The expansion velocity [km/s] is evaluated in : ')
>>> print( LyaRT_Grid['V_Arr'    ] )

>>> print( 'The logarithmic of the HI column density [cm**-2] is evaluated in : ')
>>> print( LyaRT_Grid['logNH_Arr'] )

>>> print( 'The logarithmic of the dust optical depth is evaluated in : ')
>>> print( LyaRT_Grid['logta_Arr'] )

The expansion velocity [km/s] is evaluated in :
[   0   10   20   30   40   50   60   70   80   90  100  150  200  250
  300  350  400  450  500  550  600  650  700  750  800  850  900  950
 1000]
The logarithmic of the HI column density [cm**-2] is evaluated in :
[17.   17.25 17.5  17.75 18.   18.25 18.5  18.75 19.   19.25 19.5  19.75
 20.   20.25 20.5  20.75 21.   21.25 21.5  21.75 22.  ]
The logarithmic of the dust optical depth is evaluated in :
[-3.75  -3.5   -3.25  -3.    -2.75  -2.5   -2.25  -2.    -1.75  -1.5
 -1.375 -1.25  -1.125 -1.    -0.875 -0.75  -0.625 -0.5   -0.375 -0.25
 -0.125]





Then, LyaRT_Grid[‘Grid’] are the line profiles in each of the nodes of the 3-D grid. For example, LyaRT_Grid[‘Grid’][0,1,2] is the line profile with LyaRT_Grid[‘V_Arr’][0], LyaRT_Grid[‘logNH_Arr’][1] and LyaRT_Grid[‘logta_Arr’][2]. This spectrum is evaluated in LyaRT_Grid[‘x_Arr’], that is the frequency in Doppler units. You can convert from frequency in Doppler units to wavelength by doing:

>>> w_Arr = Lya.convert_x_into_lamda( LyaRT_Grid['x_Arr'] )





w_Arr is a 1-D array with the wavelengths in meters. Let’s take a look to the spectrum:

>>> import pylab as plt
>>> plt.plot( w_Arr , LyaRT_Grid['Grid'][0,1,2] )
>>> plt.xlim( 1213*1e-10 , 1218*1e-10 )
>>> plt.xlabel( 'wavelength [m]' )
>>> plt.ylabel( 'Flux density [a.u.]' )
>>> plt.show()





[image: _images/fig_Tutorial_5_1.png]


Line profile grids with smaller RAM occupation

The data grids for the geometries ‘Thin_Shell’, ‘Galactic_Wind’, ‘Bicone_X_Slab_In’ and ‘Bicone_X_Slab_Out’ are relatively small and they occupy less than 1GB of RAM. These models have 3 dimensions: expansion velocity, HI column density and dust optical depth. However, the model ‘Thin_Shell_Cont’ includes different intrinsic line profiles, which increases the number of dimensions to 5. This increase a lot the data volume, in terms of parameter space and RAM occupation. Indeed, the default ‘Thin_Shell_Cont’ line profile grid is about 11GB. This means that when using this mode you would need to have 11GB of RAM or more. In case that you want to do some tests with a smaller grid (but still 5D) we have included a lighter grid, that is about 2GB of size.

You can load the default ‘Thin_Shell_Cont’ by doing

>>> import Lya_zelda as Lya

>>> your_grids_location = '/This/Folder/Contains/The/Grids/'

>>> Lya.funcs.Data_location = your_grids_location





where /This/Folder/Contains/The/Grids/ is the place where you store the LyaRT data grids, as shown in the Installation section.

>>> LyaRT_Grid_Full = Lya.load_Grid_Line( 'Thin_Shell_Cont' )





or

>>> LyaRT_Grid_Full = Lya.load_Grid_Line( 'Thin_Shell_Cont' , MODE='FULL' )





And you can see where the grid is evaluated by doing

>>> print( 'The expansion velocity [km/s] is evaluated in : ')
>>> print( LyaRT_Grid_Full['V_Arr'] )

>>> print( 'The logarithmic of the HI column density [cm**-2] is evaluated in : ')
>>> print( LyaRT_Grid_Full['logNH_Arr'] )

>>> print( 'The logarithmic of the dust optical depth is evaluated in : ')
>>> print( LyaRT_Grid_Full['logta_Arr'] )

>>> print( 'The logarithmic of the intrinsic equivalent width [A] is evaluated in : ')
>>> print( LyaRT_Grid_Full['logEW_Arr'] )

>>> print( 'The logarithmic of the intrinsic line width [A] is evaluated in : ')
>>> print( LyaRT_Grid_Full['Wi_Arr'] )

The expansion velocity [km/s] is evaluated in :
[   0   10   20   30   40   50   60   70   80   90  100  150  200  250
  300  350  400  450  500  550  600  650  700  750  800  850  900  950
 1000]
The logarithmic of the HI column density [cm**-2] is evaluated in :
[17.   17.25 17.5  17.75 18.   18.25 18.5  18.75 19.   19.25 19.5  19.75
 20.   20.25 20.5  20.75 21.   21.25 21.5 ]
The logarithmic of the dust optical depth is evaluated in :
[-4.  -3.5 -3.  -2.5 -2.  -1.5 -1.  -0.5  0. ]
The logarithmic of the intrinsic equivalent width [A] is evaluated in :
[-1.         -0.78947368 -0.57894737 -0.36842105 -0.15789474  0.05263158
  0.26315789  0.47368421  0.68421053  0.89473684  1.10526316  1.31578947
  1.52631579  1.73684211  1.94736842  2.15789474  2.36842105  2.57894737
  2.78947368  3.        ]
The logarithmic of the intrinsic line width [A] is evaluated in :
[0.01 0.05 0.1  0.15 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.   1.2
 1.4  1.6  1.8  2.   2.2  2.4  2.6  2.8  3.   3.25 3.5  3.75 4.   5.25
 5.5  5.75 6.  ]





Now let’s load the lighter grid for ‘Thin_Shell_Cont’,

>>> LyaRT_Grid_Light = Lya.load_Grid_Line( 'Thin_Shell_Cont' , MODE='LIGHT' )





The reduction of the size of the grid is done by reducing the number of bins in ‘logEW_Arr’ and ‘Wi_Arr’. You can see the new ‘logEW_Arr’ and ‘Wi_Arr’ arrays in:

>>> print( 'The logarithmic of the intrinsic equivalent width [A] is evaluated in : ')
>>> print( LyaRT_Grid_Light['logEW_Arr'] )

>>> print( 'The logarithmic of the intrinsic line width [A] is evaluated in : ')
>>> print( LyaRT_Grid_Light['Wi_Arr'] )

The logarithmic of the intrinsic equivalent width [A] is evaluated in :
[-1.   0.   0.4  0.8  1.2  1.6  2.   3. ]
The logarithmic of the intrinsic line width [A] is evaluated in :
[0.01 0.05 0.1  0.25 0.5  1.   2.   4.   6.  ]





If you want a smaller custom grid, you can build your own data grid by selecting nodes from LyaRT_Grid_Full. As long as you keep the format of LyaRT_Grid_Full, you will be able to pass your custom grids to the algorithms. Just as a short advice, it would be beneficial in you keep the very extremes in the evaluation arrays (for example, LyaRT_Grid_Full[‘V_Arr’][0] and LyaRT_Grid_Full[‘V_Arr’][-1]) in your new custom grid.





            

          

      

      

    

  

    
      
          
            
  
Tutorial : Computing ideal line profiles

In this tutorial you will, hopefully, learn how to compute ideal line Lyman-alpha line profiles with zELDA. The lines computed in this tutorial are ideal becase they don’t suffer from the typical artifacts caused by the fact the instruments are not perfect. These lines are in the rest frame of the galaxy.


Computing one ideal line profile

Let’s start by loading zELDA and setting the location of the LyaRT grids:

>>> import Lya_zelda as Lya

>>> your_grids_location = '/This/Folder/Contains/The/Grids/'

>>> Lya.funcs.Data_location = your_grids_location





where /This/Folder/Contains/The/Grids/ is the place where you store the LyaRT data grids, as shown in the installation section.

Now, let’s decide which outflow geometry we want to use. For this tutorial we will use the gas geometry known as Thin Shell in which the intrinsic continuum is a gaussian and a continuum with a give equivalent width.

>>> Geometry = 'Thin_Shell_Cont'





Let’s load the data containing the grid:

>>> LyaRT_Grid = Lya.load_Grid_Line( Geometry )





This contains all the necessary information to compute the line profiles. To learn more about the grids of line profiles go to Installation . Remeber that if you want to use the line profile grid with lower RAM memory occupation you must pass MODE=’LIGHT’ to Lya.load_Grid_Line.

Now let’s define the parameters of the shell model that we want. these are five:

>>> V_Value     = 50.0  # Outflow expansion velocity [km/s]
>>> logNH_Value = 20.   # Logarithmic of the neutral hydrogen column density [cm**-2]
>>> ta_Value    = 0.01  # Dust optical depth
>>> logEW_Value = 1.5   # Logarithmic the intrinsic equivalent width [A]
>>> Wi_Value    = 0.5   # Intrinsic width of the line [A]





Now, let’s set the wavelength array where we want to put the line in the international system of units (meters). We arbitrarily chose to evaluate the line +-10A around Lyman-alpha:

>>> import numpy as np
>>> w_Lya = 1215.68 # Lyman-alpha wavelength in amstrongs
>>> wavelength_Arr = np.linspace( w_Lya-10 , w_Lya+10 , 1000 ) * 1e-10





Now he have everything, let’s compute the line simply by doing:

>>> Line_Arr = Lya.RT_Line_Profile_MCMC( Geometry , wavelength_Arr , V_Value , logNH_Value , ta_Value , LyaRT_Grid , logEW_Value=logEW_Value , Wi_Value=Wi_Value )





And… It’s done! Line_Arr is a numpy array that contains the line profile evaluated in wavelength_Arr.

Let’s plot the line by doing

>>> import pylab as plt
>>> plt.plot( wavelength_Arr *1e10 , Line_Arr )
>>> plt.xlabel('wavelength[A]' , size=15 )
>>> plt.ylabel('Flux density [a.u.]' , size=15 )
>>> plt.show()





This should show something like this

[image: _images/fig_Tutorial_1_1.png]


Computing many ideal line profile

Above we have just seen how to compute one ideal line profile. In the case that you want to compute several zELDA has a more compact function.

Let’s start like in the case above in which we set the location of the grids:

>>> import Lya_zelda as Lya

>>> your_grids_location = '/This/Folder/Contains/The/Grids/'

>>> Lya.funcs.Data_location = your_grids_location





where /This/Folder/Contains/The/Grids/ is the place where you store the LyaRT data grids, as shown in the installation section.

Now, let’s set the geometry:

>>> Geometry = 'Thin_Shell_Cont'





And now, instead of loading the grid, let’s define the outflow parameters. In this case they will be lists (or numpy arrays) as we want, for example 3 line profile configurations:

>>> V_Arr     = [ 50.0 , 100.   , 200.    ] # Outflow expansion velocity [km/s]
>>> logNH_Arr = [ 18.  ,  19.   ,  20.    ] # Logarithmic of the neutral hydrogen column density [cm**-2]
>>> ta_Arr    = [  0.1 ,   0.01 ,   0.001 ] # Dust optical depth
>>> logEW_Arr = [  1.  ,   1.5  ,   2.0   ] # Logarithmic the intrinsic equivalent width [A]
>>> Wi_Arr    = [  0.1 ,   0.5  ,   1.0   ] # Intrinsic width of the line [A]





and the wavelength array

>>> import numpy as np
>>> w_Lya = 1215.68 # Lyman-alpha wavelength in amstrongs
>>> wavelength_Arr = np.linspace( w_Lya-10 , w_Lya+10 , 1000 ) * 1e-10





Now let’s actually compute the lines:

>>> Line_Matrix = Lya.RT_Line_Profile( Geometry , wavelength_Arr , V_Arr , logNH_Arr , ta_Arr , logEW_Arr=logEW_Arr , Wi_Arr=Wi_Arr )





Line_Matrix is a 2-D numpy array containing the line profiles for the configurations. For example, Line_Matrix[0] has outflow velocity V_Arr[0], neutral hydrogen column density logNH_Arr[0] and so on.

Let’s plot them:

>>> import pylab as plt

>>> for i in range( 0 , 3 ) :
>>>     plt.plot( wavelength_Arr *1e10 , Line_Matrix[i] )

>>> plt.xlabel('wavelength[A]'       , size=15 )
>>> plt.ylabel('Flux density [a.u.]' , size=15 )
>>> plt.show()





This should show something like this:

[image: _images/fig_Tutorial_1_2.png]
Now you know how to get ideal Lyman-alpha line profiles!





            

          

      

      

    

  

    
      
          
            
  
Tutorial : Computing mock line profiles

In this tutorial you will, hopefully, learn how to compute mock line Lyman-alpha line profiles with zELDA. The lines computed in this tutorial suffer from the typical artifacts caused by the fact the instruments are not perfect.


Mocking Lyman-alpha line profiles

Let’s start by loading zELDA and setting the location of the LyaRT grids:

>>> import Lya_zelda as Lya

>>> your_grids_location = '/This/Folder/Contains/The/Grids/'

>>> Lya.funcs.Data_location = your_grids_location





where /This/Folder/Contains/The/Grids/ is the place where you store the LyaRT data grids, as shown in the Installation section.

Now, let’s decide which outflow geometry we want to use. For this tutorial we will use the gas geometry known as Thin Shell in which the intrinsic continuum is a gaussian and a continuum with a give equivalent width.

>>> Geometry = 'Thin_Shell_Cont'





Let’s load the data containing the grid:

>>> LyaRT_Grid = Lya.load_Grid_Line( Geometry )





This contains all the necessary information to compute the line profiles. To learn more about the grids of line profiles go to About the LyaRT data grids . Remeber that if you want to use the line profile grid with lower RAM memory occupation you must pass MODE=’LIGHT’ to Lya.load_Grid_Line.

Now let’s define the parameters of the shell model that we want. these are five:

>>> z_t      = 0.5   # redshift of the source
>>> V_t      = 50.0  # Outfloe expansion velocity [km/s]
>>> log_N_t  = 20.   # Logarithmic of the neutral hydrogen column density [cm**-2]
>>> t_t      = 0.01  # Dust optical depth
>>> log_EW_t = 1.5   # Logarithmic the intrinsic equivalent width [A]
>>> W_t      = 0.5   # Intrinsic width of the line [A]
>>> F_t      = 1.    # Total flux of the line





Now let’s set the quality of the line profile:

>>> PNR_t  = 10.0 # Signal to noise ratio of the maximum of the line.
>>> FWHM_t = 0.5  # Full width half maximum diluting the line. Mimics finite resolution. [A]
>>> PIX_t  = 0.2  # Wavelength binning of the line. [A]





Now he have everything, let’s compute the line simply by doing:

>>> w_Arr , f_Arr , _ = Lya.Generate_a_real_line( z_t , V_t, log_N_t, t_t, F_t, log_EW_t, W_t , PNR_t, FWHM_t, PIX_t, LyaRT_Grid, Geometry )





And… It’s done! w_Arr is a numpy array that contains the wavelength where the line profile is evaluated. Meanwhile, f_Arr is the actual line profile.

Let’s plot the line by doing

>>> import pylab as plt
>>> plt.plot( w_Arr , f_Arr )
>>> plt.xlabel('wavelength[A]' , size=15 )
>>> plt.ylabel('Flux density [a.u.]' , size=15 )
>>> plt.xlim(1815,1835)
>>> plt.show()





This should show something like this

[image: _images/fig_Tutorial_2_1.png]


Plotting cooler line profiles

If you want a cooler and more ‘accurate’ plot of the line profile you can use:

>>> w_pix_Arr , f_pix_Arr = Lya.plot_a_rebinned_line( w_Arr , f_Arr , PIX_t )
>>> plt.plot( w_pix_Arr , f_pix_Arr )
>>> plt.xlabel('wavelength[A]' , size=15 )
>>> plt.ylabel('Flux density [a.u.]' , size=15 )
>>> plt.xlim(1815,1835)
>>> plt.show()





[image: _images/fig_Tutorial_2_2.png]
Lya.plot_a_rebinned_line is just a function that returns the line profile and wavelength array in a cool way to plot them. You probably shouldn’t use for science the output of Lya.plot_a_rebinned_line, just for plotting.





            

          

      

      

    

  

    
      
          
            
  
Tutorial : Fitting a line profile using deep learning

In this tutorial you will, hopefully, learn how fit Lyman-alpha line profiles using deep learning with zELDA.


Getting started

Let’s start by loading zELDA creating a mock line profile that we will fit later. For more details on how to create a mock line profile go to Mock line profiles

>>> import Lya_zelda as Lya
>>> your_grids_location = '/This/Folder/Contains/The/Grids/'
>>> Lya.funcs.Data_location = your_grids_location

>>> Geometry = 'Thin_Shell_Cont'
>>> LyaRT_Grid = Lya.load_Grid_Line( Geometry )

>>> # Defining the model parameters:
>>> z_t      = 0.5   # redshift of the source
>>> V_t      = 50.0  # Outflow expansion velocity [km/s]
>>> log_N_t  = 20.   # Logarithmic of the neutral hydrogen column density [cm**-2]
>>> t_t      = 0.01  # Dust optical depth
>>> log_EW_t = 1.5   # Logarithmic the intrinsic equivalent width [A]
>>> W_t      = 0.5   # Intrinsic width of the line [A]
>>> F_t      = 1.    # Total flux of the line

>>> # Defining the quality of the line profile:
>>> PNR_t  = 15.0 # Signal to noise ratio of the maximum of the line.
>>> FWHM_t = 0.2  # Full width half maximum diluting the line. Mimics finite resolution. [A]
>>> PIX_t  = 0.1  # Wavelength binning of the line. [A]

>>> w_Arr , f_Arr , s_Arr = Lya.Generate_a_real_line( z_t , V_t, log_N_t, t_t, F_t, log_EW_t, W_t , PNR_t, FWHM_t, PIX_t, LyaRT_Grid, Geometry )





where /This/Folder/Contains/The/Grids/ is the place where you store the LyaRT data grids, as shown in the installation section. And… It’s done! w_Arr is a numpy array that contains the wavelength where the line profile is evaluated. Meanwhile, f_Arr is the actual line profile. s_Arr is the uncertainty of the flux density. Remeber that if you want to use the line profile grid with lower RAM memory occupation you must pass MODE=’LIGHT’ to Lya.load_Grid_Line.

Let’s have a look to how the line looks:

>>> w_Arr , f_Arr , s_Arr  = Lya.Generate_a_real_line( z_t , V_t, log_N_t, t_t, F_t, log_EW_t, W_t , PNR_t, FWHM_t, PIX_t, LyaRT_Grid, Geometry )

>>> w_pix_Arr , f_pix_Arr = Lya.plot_a_rebinned_line( w_Arr , f_Arr , PIX_t )

>>> import pylab as plt
>>> plt.plot( w_pix_Arr , f_pix_Arr )
>>> plt.xlabel('wavelength[A]' , size=15 )
>>> plt.ylabel('Flux density [a.u.]' , size=15 )
>>> plt.xlim(1815,1835)
>>> plt.show()
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Now that we have our mock line profile. Let’s load the neural network. As we have produce a line profile for an outflow (V_t>0) we are going to load the deep neural network for outflows

>>> machine_data =  Lya.Load_NN_model( 'Outflow' )





In case you want to do the analysis for inflows just call Lya.Load_NN_model( ‘Inflow’ ). machine_data is a python dictionary that contains all the necessary data for the deep neural network approach. Let’s pick up from it two variables:

>>> machine    = machine_data['Machine' ]
>>> w_rest_Arr = machine_data[ 'w_rest' ]





machine is an object from skitlearn with the trained neural network and w_rest_Arr is the rest frame wavelength where the line profiles used for the training were evaluated. w_rest_Arr is important to check that the neural networks is working in the same wavelength array that the line profiles will be evaluated. In principle you don’t have to do anything with w_rest_Arr, but we need to pass it to other functions.



Using the DNN in the un-perturbed line profile

Let’s start by simple evaluating the DNN using the mock line profile without perturbing it:

>>> Sol , z_sol = Lya.NN_measure( w_Arr , f_Arr , s_Arr , FWHM_t , PIX_t , machine , w_rest_Arr , N_iter=None )





Done! . Sol is a matrix that contains the prediction by the DNN and z_sol is the predicted redshift. You can print the predicted properties doing:

>>> print( 'The measured redshift                                                     is' , z_sol    )
>>> print( 'The measured logarithm of the expasion velocity                           is' , Sol[0,1] )
>>> print( 'The measured logarithm of the HI column density                           is' , Sol[0,2] )
>>> print( 'The measured logarithm of the dust optical depth                          is' , Sol[0,3] )
>>> print( 'The measured logarithm of the intrinsic equivalent width                  is' , Sol[0,4] )
>>> print( 'The measured logarithm of the intrinsic            width                  is' , Sol[0,5] )
>>> print( 'The measured shift of the true Lya wavelgnth from the maximum of the line is' , Sol[0,0] )





This should give something like

The measured redshift                                                     is 0.49994403239322693
The measured logarithm of the expasion velocity                           is 1.5821419036064905
The measured logarithm of the HI column density                           is 20.149247231711733
The measured logarithm of the dust optical depth                          is -3.310662004999448
The measured logarithm of the intrinsic equivalent width                  is 1.458352960574508
The measured logarithm of the intrinsic            width                  is -0.804093047888869
The measured shift of the true Lya wavelgnth from the maximum of the line is -1.2773994188976223





Let’s see how this new spectrum compares with the target:

>>> PNR = 100000. # let's put infinite signal to noise in the model line

>>> V_sol    = 10**Sol[0,1] # Expansion velocity km/s
>>> logN_sol =     Sol[0,2] # log of HI column density cm**-2
>>> t_sol    = 10**Sol[0,3] # dust optical depth
>>> logE_sol =     Sol[0,4] # log intrinsic EW [A]
>>> W_sol    = 10**Sol[0,5] # intrinsic width [A]

# creates the line

>>> w_One_Arr , f_One_Arr , _  = Lya.Generate_a_real_line( z_sol , V_sol, logN_sol, t_sol, F_t, logE_sol, W_sol, PNR, FWHM_t, PIX_t, LyaRT_Grid, Geometry )

# plot the target and the predicted line

>>> w_pix_One_Arr , f_pix_One_Arr = Lya.plot_a_rebinned_line( w_One_Arr , f_One_Arr , PIX_t )

>>> plt.plot( w_pix_Arr     , f_pix_Arr     , label='Target' )
>>> plt.plot( w_pix_One_Arr , f_pix_One_Arr , label='1 iter' )

>>> plt.legend(loc=0)
>>> plt.xlabel('wavelength[A]' , size=15 )
>>> plt.ylabel('Flux density [a.u.]' , size=15 )
>>> plt.xlim(1815,1835)
>>> plt.show()





You should get something like:
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Using the DNN with Monte Carlo perturbations

Normally, it is better to do more than one iteration, as it leads to better results. These iterations basically perturb the flux density f_Arr by adding gaussian noise with the amplitude of s_Arr in each wavelength bin. Then, this new perturbed spectrum is send to the DNN. For each of these iterations the output of the DNN is stored. For example for 1000 iterations :

>>> Sol , z_sol , log_V_Arr , log_N_Arr , log_t_Arr , z_Arr , log_E_Arr , log_W_Arr = Lya.NN_measure( w_Arr , f_Arr , s_Arr , FWHM_t , PIX_t , machine , w_rest_Arr , N_iter=1000 )





The arrays log_V_Arr, log_N_Arr, log_t_Arr, z_Arr, log_E_Arr and log_W_Arr contain the output of the DNN for the iterations for the logarithms of the expansion velocity, the logarithm of the neutral hydrogen column density, the logarithm of the dust optical depth, the redshift, the logarithm of the intrinsic equivalent width and the logarithm of the intrinsic width of the line. From these arrays we can compute the result from the DNN analysis by taking the 50th percentile. The +-1 sigma uncertainty can be computed as the 16th and 84th percentile.

>>> import numpy as np

>>> # Redshitft
>>> z_50     = np.percentile(    z_Arr , 50 )
>>> z_16     = np.percentile(    z_Arr , 16 )
>>> z_84     = np.percentile(    z_Arr , 84 )

>>> # Expansion velocity
>>> V_50     = 10 ** np.percentile( log_V_Arr , 50 )
>>> V_16     = 10 ** np.percentile( log_V_Arr , 16 )
>>> V_84     = 10 ** np.percentile( log_V_Arr , 84 )

>>> # Logarithmic of HI column density
>>> log_N_50 = np.percentile( log_N_Arr , 50 )
>>> log_N_16 = np.percentile( log_N_Arr , 16 )
>>> log_N_84 = np.percentile( log_N_Arr , 84 )

>>> # Dust optical depth
>>> t_50     = 10 ** np.percentile( log_t_Arr , 50 )
>>> t_16     = 10 ** np.percentile( log_t_Arr , 16 )
>>> t_84     = 10 ** np.percentile( log_t_Arr , 84 )

>>> # Logarithmic of intrinsic equivalent width
>>> log_E_50 = np.percentile( log_E_Arr , 50 )
>>> log_E_16 = np.percentile( log_E_Arr , 16 )
>>> log_E_84 = np.percentile( log_E_Arr , 84 )

>>> # Intrinsic width
>>> W_50     = 10 ** np.percentile( log_W_Arr , 50 )
>>> W_16     = 10 ** np.percentile( log_W_Arr , 16 )
>>> W_84     = 10 ** np.percentile( log_W_Arr , 84 )





let’s see how the line profiles look:

>>> # Compute the 100 iterations line profile
>>> w_50th_Arr , f_50th_Arr , _  = Lya.Generate_a_real_line( z_50 , V_50, log_N_50, t_50, F_t, log_E_50, W_50, PNR, FWHM_t, PIX_t, LyaRT_Grid, Geometry )

>>> # Get cooler profiles
>>> w_pix_50th_Arr , f_pix_50th_Arr = Lya.plot_a_rebinned_line( w_50th_Arr , f_50th_Arr , PIX_t )

>>> # Plot
>>> plt.plot( w_pix_Arr      , f_pix_Arr      , label='Target'   )
>>> plt.plot( w_pix_One_Arr  , f_pix_One_Arr  , label='1 iter'   )
>>> plt.plot( w_pix_50th_Arr , f_pix_50th_Arr , label='1000 iter')

>>> plt.legend(loc=0)
>>> plt.xlabel('wavelength[A]' , size=15 )
>>> plt.ylabel('Flux density [a.u.]' , size=15 )
>>> plt.xlim(1815,1835)
>>> plt.show()





[image: _images/fig_Tutorial_3_3.png]
finally, let’s compare the parameters that we got with the input:

>>> print( 'The true redshift                 is' , z_t      , 'and the predicted is' , z_50     , '(-' , z_50-z_16         , ', +' , z_84-z_50         , ')' )
>>> print( 'The true expansion velocity       is' , V_t      , 'and the predicted is' , V_50     , '(-' , V_50-V_16         , ', +' , V_84-V_50         , ')' )
>>> print( 'The true dust optical depth       is' , t_t      , 'and the predicted is' , t_50     , '(-' , t_50-t_16         , ', +' , t_84-t_50         , ')' )
>>> print( 'The true intrinsic width          is' , W_t      , 'and the predicted is' , W_50     , '(-' , W_50-W_16         , ', +' , W_84-W_50         , ')' )
>>> print( 'The true log of HI column density is' , log_N_t  , 'and the predicted is' , log_N_50 , '(-' , log_N_50-log_N_16 , ', +' , log_N_84-log_N_50 , ')' )
>>> print( 'The true log of equivalent width  is' , log_EW_t , 'and the predicted is' , log_E_50 , '(-' , log_E_50-log_E_16 , ', +' , log_E_84-log_E_50 , ')' )





This should give something like:

The true redshift                 is 0.5 and the predicted is 0.49999833428137275 (- 0.00017321665235831007 , + 0.0003615214512187048 )
The true expansion velocity       is 50.0 and the predicted is 47.070589157142614 (- 16.100374040796254 , + 48.27234502291723 )
The true dust optical depth       is 0.01 and the predicted is 0.00379679848371737 (- 0.003483235501588427 , + 0.049396128990436335 )
The true intrinsic width          is 0.5 and the predicted is 0.280484205908298 (- 0.12228181625600373 , + 0.2150273326940031 )
The true log of HI column density is 20.0 and the predicted is 20.019139948537997 (- 0.5728866241916535 , + 0.207985045834004 )
The true log of equivalent width  is 1.5 and the predicted is 1.5595962407058306 (- 0.09992888862396399 , + 0.16009784914990055 )





The particular values that you print will be slightly different when you run it, but more or less it should go in the same direction.

That was fun, hah? Now you know how to use the deep neural network scheme in zELDA.





            

          

      

      

    

  

    
      
          
            
  
Tutorial : Train your own neural network

In this tutorial you will, hopefully, learn how to train your own deep neural network to predict the properties of outflos/inflows. For this we are going to use the python package scikitlearn (https://scikit-learn.org/stable/).


Generating data sets for the training

Let’s start by loading zELDA grid of lines:

>>> import numpy as np
>>> import Lya_zelda as Lya
>>> import pickle
>>> from sklearn.neural_network import MLPRegressor

>>> your_grids_location = '/This/Folder/Contains/The/Grids/'
>>> Lya.funcs.Data_location = your_grids_location

>>> Geometry = 'Thin_Shell_Cont'

>>> DATA_LyaRT = Lya.load_Grid_Line( Geometry )





And let’s do it for outflows,

>>> MODE = 'Outflow' # 'Inflow' for inflows





Let’s define the region where we want to generate mock line profiles. You can adjust this to whatever your want. The values presented here are the standard in zELDA, but you can change them.

>>> # Logarithm of the expansion velocity in [km/s]
>>> log_V_in = [  1.0   ,  3.0   ]

>>> # Logarithm of the HI column density [cm**-2]
>>> log_N_in = [ 17.0   , 21.5   ]

>>> # Logarithm of the dust optical depth
>>> log_t_in = [ -4.0   , 0.0  ]

>>> # Logarithm of the intrinsic equivalent width [A]
>>> log_E_in = [ 0.0    , 2.3  ]

>>> # Logarithm of the intrinsic line width [A]
>>> log_W_in = [ -2.    , 0.7  ]

>>> #Redshift interval
>>> z_in = [ 0.0001 , 4.00 ]

>>> # Logarithm of the full width half maximum convolving the spectrum (resolution) [A]
>>> log_FWHM_in = [ -1.  ,   0.3  ]

>>> # Logarithm of the pixel size [A]
>>> log_PIX_in  = [ -1.3 ,   0.3  ]

>>> # Logarithm of the signal to noise of the peak of the line
>>> log_PNR_in = [ 0.7 , 1.6 ]





Each of these lists have 2 elements. For example, log_V_in[0] indicates the lower border of the interval and log_V_in[1] the upper limit.

Let’s set the number of sources that we want in our sample, for example 1000,

>>> N_train = 1000





Let’s generate the properties of each of the training examples:

>>> V_Arr , log_N_Arr , log_t_Arr , log_E_Arr , log_W_Arr = Lya.NN_generate_random_outflow_props_5D( N_train , log_V_in , log_N_in , log_t_in , log_E_in , log_W_in , MODE=MODE )

>>> z_Arr = np.random.rand( N_train ) * ( z_in[1] - z_in[0] ) + z_in[0]

>>> log_FWHM_Arr = np.random.rand( N_train ) * ( log_FWHM_in[1] - log_FWHM_in[0] ) + log_FWHM_in[0]
>>> log_PIX_Arr  = np.random.rand( N_train ) * (  log_PIX_in[1] -  log_PIX_in[0] ) +  log_PIX_in[0]
>>> log_PNR_Arr  = np.random.rand( N_train ) * (  log_PNR_in[1] -  log_PNR_in[0] ) +  log_PNR_in[0]





each of these arrays contains random values that will be used in the training, for example, V_Arr contains the expansion velocity, etc.

Let’s initialize the arrays where we want to store the data that we will need for the training

>>> F_t = 1.0

>>> Delta_True_Lya_Arr = np.zeros( N_train )

>>> N_bins = 1000

>>> z_PEAK_Arr = np.zeros( N_train )

>>> LINES_train = np.zeros( N_train * N_bins ).reshape( N_train , N_bins )

>>> N_bins_input = N_bins + 3

>>> INPUT_train = np.zeros( N_train * N_bins_input ).reshape( N_train , N_bins_input )





Let’s generate the lines using the function Lya.Generate_a_line_for_training,

>>> print( 'Generating training set' )

>>> cc = 0.0
>>> for i in range( 0, N_train ):

>>>     per = 100. * i / N_train
>>>     if per >= cc :
>>>         print( cc , '%' )
>>>         cc += 1.0

>>>     V_t = V_Arr[i]
>>>     t_t = 10**log_t_Arr[i]
>>>     log_N_t = log_N_Arr[i]
>>>     log_E_t = log_E_Arr[i]
>>>     W_t = 10**log_W_Arr[i]

>>>     z_t = z_Arr[i]

>>>     FWHM_t = 10**log_FWHM_Arr[ i ]
>>>     PIX_t  = 10**log_PIX_Arr[  i ]
>>>     PNR_t = 10**log_PNR_Arr[i]

>>>     rest_w_Arr , train_line , z_max_i , input_i = Lya.Generate_a_line_for_training( z_t , V_t, log_N_t, t_t, F_t, log_E_t, W_t , PNR_t, FWHM_t, PIX_t, DATA_LyaRT, Geometry)

>>>     z_PEAK_Arr[i] = z_max_i

>>>     Delta_True_Lya_Arr[ i ] = 1215.67 * ( (1+z_t)/(1+z_max_i) - 1. )

>>>     LINES_train[i] = train_line
>>>     INPUT_train[i] = input_i





rest_w_Arr is the wavelength array where the profiles are evaluated in the rest frame of the peak of the line. train_line is the line profile evaluated in rest_w_Arr, z_max_i is the redshift of the source if the maximum of the line matches the Lyman-alpha line and input_i is the actual input that we will use for the DNN.

Now let’s save all the data

>>> dic = {}
>>> dic[ 'lines' ] = LINES_train

>>> dic[ 'NN_input' ] = INPUT_train

>>> dic['z_PEAK'         ] = z_PEAK_Arr
>>> dic['z'              ] = z_Arr
>>> dic['Delta_True_Lya'] = Delta_True_Lya_Arr
>>> dic['V'             ] = V_Arr
>>> dic['log_N'         ] = log_N_Arr
>>> dic['log_t'         ] = log_t_Arr
>>> dic['log_PNR'       ] = log_PNR_Arr
>>> dic['log_W'         ] = log_W_Arr
>>> dic['log_E'         ] = log_E_Arr
>>> dic['log_PIX'       ] = log_PIX_Arr
>>> dic['log_FWHM'      ] = log_FWHM_Arr

>>> dic['rest_w'] = rest_w_Arr

>>> np.save( 'data_for_training.npy' , dic )





Done, now you have a set of data that can be used as training set. Of course we have done it with only 1000 galaxies. In general you want to use about 100 000 or more. You can divide the data in small data sets for parallelization and then combine them, for example.



Get your DNN ready!

Let’s load the data that we have just saved,

>>> Train_data = np.load( 'data_for_training.npy' , allow_pickle=True ).item()





Let’s get the input that we will use in the training

>>> Input_train = Train_data['NN_input']





Now let’s load the properties that we want to predict,

>>> Train_Delta_True_Lya_Arr = Train_data['Delta_True_Lya']

>>> Train_log_V_Arr = np.log10( Train_data[    'V'] )
>>> Train_log_N_Arr =           Train_data['log_N']
>>> Train_log_t_Arr =           Train_data['log_t']
>>> Train_log_E_Arr =           Train_data['log_E']
>>> Train_log_W_Arr =           Train_data['log_W']





and let’s prepare it for skitlearn,

>>> TRAINS_OBSERVED = np.zeros( N_train * 6 ).reshape( N_train , 6 )

>>> TRAINS_OBSERVED[ : , 0 ] = Train_Delta_True_Lya_Arr
>>> TRAINS_OBSERVED[ : , 1 ] = Train_log_V_Arr
>>> TRAINS_OBSERVED[ : , 2 ] = Train_log_N_Arr
>>> TRAINS_OBSERVED[ : , 3 ] = Train_log_t_Arr
>>> TRAINS_OBSERVED[ : , 4 ] = Train_log_E_Arr
>>> TRAINS_OBSERVED[ : , 5 ] = Train_log_W_Arr





Now let’s actually do the training. For this we have to decide what kind of deep learning configuration we want. For this tutorial let’s use 2 hidden layers, each of 100 nodes,

>>> hidden_shape = ( 100 , 100 )





And train,

>>> from sklearn.neural_network import MLPRegressor

>>> est = MLPRegressor( hidden_layer_sizes=hidden_shape , max_iter=1000 )

>>> est.fit( Input_train , TRAINS_OBSERVED )





Done! You have now your custom DNN. Let’s save it now so that you can use it later

>>> dic = {}

>>> dic['Machine'] = est
>>> dic['w_rest' ] = rest_w_Arr

>>> pickle.dump( dic , open( 'my_custom_DNN.sav' , 'wb'))





Done! Perfect. In this example we have just saved the skitlearn object and the wavelength array where the input for the DNN is computed. In principle you can put more things inside the dictionary. You can record the dynamical range of the parameters used (e.g. log_V_in), etc, etc and you can label them in the dictionary as you wish. However, the fundamental variables that must be saved are ‘Machine’ and ‘w_rest’.



Using your custom DNN

If you want to use you custom DNN you can follow all the steps in Fitting a line profile using deep learning. The only difference is that, instead of loading the default DNN with Lya.Load_NN_model(), you have to load your DNN, which will also have the dic[‘Machine’] and dic[‘w_rest’] entries, as well the default one. Let’s see an example of how you can load the custom DNN that you have just used:

>>> machine_data = pickle.load(open( 'my_custom_DNN.sav' , 'rb'))





machine_data is a python dictionary, with two entries: ‘Machine’ and ‘w_rest’. These are the ones that you need in Fitting a line profile using deep learning.





            

          

      

      

    

  

    
      
          
            
  
Tutorial : Fitting a line profile using Monte Carlo Markov Chains

In this tutorial you will, hopefully, learn how fit Lyman-alpha line profiles using a Monte Carlo Markov Chain with zELDA. The MCMC engine is emcee (https://emcee.readthedocs.io/en/stable/).


Getting started

Let’s start by loading zELDA creating a mock line profile that we will fit later. For more details on how to create a mock line profile go to Mock line profiles

>>> import Lya_zelda as Lya
>>> your_grids_location = '/This/Folder/Contains/The/Grids/'
>>> Lya.funcs.Data_location = your_grids_location

>>> Geometry = 'Thin_Shell_Cont'
>>> LyaRT_Grid = Lya.load_Grid_Line( Geometry )

>>> # Defining the model parameters:
>>> z_t      = 0.5   # redshift of the source
>>> V_t      = 40.0  # Outflow expansion velocity [km/s]
>>> log_N_t  = 20.   # Logarithmic of the neutral hydrogen column density [cm**-2]
>>> t_t      = 0.01  # Dust optical depth
>>> log_EW_t = 1.5   # Logarithmic the intrinsic equivalent width [A]
>>> W_t      = 0.5   # Intrinsic width of the line [A]
>>> F_t      = 1.    # Total flux of the line

>>> # Defining the quality of the line profile:
>>> PNR_t  = 15.0 # Signal to noise ratio of the maximum of the line.
>>> FWHM_t = 0.2  # Full width half maximum diluting the line. Mimics finite resolution. [A]
>>> PIX_t  = 0.1  # Wavelength binning of the line. [A]

>>> w_Arr , f_Arr , s_Arr = Lya.Generate_a_real_line( z_t , V_t, log_N_t, t_t, F_t, log_EW_t, W_t , PNR_t, FWHM_t, PIX_t, LyaRT_Grid, Geometry )





where /This/Folder/Contains/The/Grids/ is the place where you store the LyaRT data grids, as shown in the installation section. And… It’s done! w_Arr is a numpy array that contains the wavelength where the line profile is evaluated. Meanwhile, f_Arr is the actual line profile. s_Arr is the uncertainty of the flux density. Remeber that if you want to use the line profile grid with lower RAM memory occupation you must pass MODE=’LIGHT’ to Lya.load_Grid_Line.

Let’s have a look to how the line looks:

>>> w_Arr , f_Arr , s_Arr  = Lya.Generate_a_real_line( z_t , V_t, log_N_t, t_t, F_t, log_EW_t, W_t , PNR_t, FWHM_t, PIX_t, LyaRT_Grid, Geometry )

>>> w_pix_Arr , f_pix_Arr = Lya.plot_a_rebinned_line( w_Arr , f_Arr , PIX_t )

>>> import pylab as plt
>>> plt.plot( w_pix_Arr , f_pix_Arr )
>>> plt.xlabel('wavelength[A]' , size=15 )
>>> plt.ylabel('Flux density [a.u.]' , size=15 )
>>> plt.xlim(1815,1835)
>>> plt.show()
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The MCMC anlysis

Let’s now set the configuration for the MCMC analysis.

>>> N_walkers = 200 # Number of walkers
>>> N_burn    = 200 # Number of steps to burn-in
>>> N_steps   = 300 # Number of steps to run after burning-in





Now let’s choose the method to initialize the walkers. There are basically two methods: using the deep neural network or doing a fast particle swarm optimization (PSO). For this tutorial we will use the deep neural network.

>>> MODE = 'DNN'





If you want to use instead the PSO you can set MODE = ‘PSO’.

Now let’s get the regions where we want to originally spawn our lovely walkers:

>>> log_V_in , log_N_in , log_t_in , log_E_in , W_in , z_in , Best = Lya.MCMC_get_region_6D( MODE , w_Arr , f_Arr , s_Arr , FWHM_t , PIX_t , LyaRT_Grid , Geometry )





The variables log_V_in, log_N_in, log_t_in, log_E_in, W_in and z_in are python lists of two elements containing the range where to spawn the walkers for the logarithmic of the bulk velocity, the logarithmic of the HI column density, the logarithmic of the dust optical, the logarithmic of the intrinsic equivalent width, the intrinsic width of the line and the redshift. For example, z_in[0] contains the minimum redshift and z_in[0] the maximum. Actually this step is not necessary and if you want you can continue without defining these variables or setting them as you please. Also, remember that these list only maker where the walkers are spawned. They might actually get outside this volume if the best fitting region is outside.

Let’s now run the MCMC:

>>> sampler = Lya.MCMC_Analysis_sampler_5( w_Arr , f_Arr , s_Arr , FWHM_t , N_walkers , N_burn , N_steps , Geometry , LyaRT_Grid , z_in=z_in , log_V_in=log_V_in , log_N_in=log_N_in , log_t_in=log_t_in , log_E_in=log_E_in , W_in=W_in )





sampler is an object of the python package emcee. Note that there is a way of forcing the redshift to be inside z_in. We decided to this with only this property in case you know the redshift of the source before hand. you can do this by passing FORCE_z=True to Lya.MCMC_Analysis_sampler_5.

Now let’s get the actual value of the predicted properties and their 1-sigma uncertainty. For this, in this tutorial we chose as our prediction the percentile 50th o the probability distribution function of the variables. For the +-1-sigma uncertainty we choose the percentiles 16th and 84th.

>>> Q_Arr = [ 16 , 50 , 84 ] # You can add more percentiles here, like 95

>>> perc_matrix_sol , flat_samples = Lya.get_solutions_from_sampler( sampler , N_walkers , N_burn , N_steps , Q_Arr )





flat_samples contains the MCMC chains flatten. perc_matrix_sol is a 2-D array with dimensions 6xlen(Q_Arr) containing the percentiles of the variables. You can extract the values doing something like:

>>> # redshift.
>>> z_16     =     perc_matrix_sol[ 3 , 0 ] # corresponds to Q_Arr[0]
>>> z_50     =     perc_matrix_sol[ 3 , 1 ] # corresponds to Q_Arr[1]
>>> z_84     =     perc_matrix_sol[ 3 , 2 ] # corresponds to Q_Arr[2]

>>> # Expansion velocity.
>>> V_16     = 10**perc_matrix_sol[ 0 , 0 ]
>>> V_50     = 10**perc_matrix_sol[ 0 , 1 ]
>>> V_84     = 10**perc_matrix_sol[ 0 , 2 ]

>>> # dust optical depth.
>>> t_16     = 10**perc_matrix_sol[ 2 , 0 ]
>>> t_50     = 10**perc_matrix_sol[ 2 , 1 ]
>>> t_84     = 10**perc_matrix_sol[ 2 , 2 ]

>>> # Intrinsic width.
>>> W_16     =     perc_matrix_sol[ 5 , 0 ]
>>> W_50     =     perc_matrix_sol[ 5 , 1 ]
>>> W_84     =     perc_matrix_sol[ 5 , 2 ]

>>> # Logarithmic of the intrinsic equivalent width.
>>> log_E_16 =     perc_matrix_sol[ 4 , 0 ]
>>> log_E_50 =     perc_matrix_sol[ 4 , 1 ]
>>> log_E_84 =     perc_matrix_sol[ 4 , 2 ]

>>> # Logarithmic of the HI column density.
>>> log_N_16 =     perc_matrix_sol[ 1 , 0 ]
>>> log_N_50 =     perc_matrix_sol[ 1 , 1 ]
>>> log_N_84 =     perc_matrix_sol[ 1 , 2 ]





Let’s compare the MCMC prediction with the actual input:

>>> print( 'The true redshift                 is' , z_t      , 'and the predicted is' , z_50     , '(-' , z_50-z_16         , ', +' , z_84-z_50         , ')' )
>>> print( 'The true expansion velocity       is' , V_t      , 'and the predicted is' , V_50     , '(-' , V_50-V_16         , ', +' , V_84-V_50         , ')' )
>>> print( 'The true dust optical depth       is' , t_t      , 'and the predicted is' , t_50     , '(-' , t_50-t_16         , ', +' , t_84-t_50         , ')' )
>>> print( 'The true intrinsic width          is' , W_t      , 'and the predicted is' , W_50     , '(-' , W_50-W_16         , ', +' , W_84-W_50         , ')' )
>>> print( 'The true log of HI column density is' , log_N_t  , 'and the predicted is' , log_N_50 , '(-' , log_N_50-log_N_16 , ', +' , log_N_84-log_N_50 , ')' )
>>> print( 'The true log of equivalent width  is' , log_EW_t , 'and the predicted is' , log_E_50 , '(-' , log_E_50-log_E_16 , ', +' , log_E_84-log_E_50 , ')' )





which should look something like:

The true redshift                 is 0.5 and the predicted is 0.49991074547548753 (- 1.9665578543492934e-05 , + 0.0014991528312225944 )
The true expansion velocity       is 40.0 and the predicted is 30.741297629627855 (- 1.097915986182759 , + 244.88872432354253 )
The true dust optical depth       is 0.01 and the predicted is 0.04392859929402969 (- 0.035550939281926146 , + 0.0103076912398413 )
The true intrinsic width          is 0.5 and the predicted is 0.2859470609607235 (- 0.09765211992507192 , + 0.06363668998672473 )
The true log of HI column density is 20.0 and the predicted is 20.215438954615962 (- 2.4584647794744434 , + 0.027551697514507367 )
The true log of equivalent width  is 1.5 and the predicted is 1.7365288817793056 (- 0.29375812799042955 , + 0.033311663274792735 )





Now let’s plot the lines and see how they compare:

>>> # Infinite signal to noise in the model
>>> PNR = 100000.

>>> # Compute line
>>> w_One_Arr , f_One_Arr , _  = Lya.Generate_a_real_line( z_50, V_50, log_N_50, t_50, F_t, log_E_50, W_50, PNR, FWHM_t, PIX_t, LyaRT_Grid, Geometry )

>>> # Make cooler
>>> w_pix_One_Arr , f_pix_One_Arr = Lya.plot_a_rebinned_line( w_One_Arr , f_One_Arr , PIX_t )

>>> # Plot
>>> plt.plot( w_pix_Arr     , f_pix_Arr     , label='Target' )
>>> plt.plot( w_pix_One_Arr , f_pix_One_Arr , label='MCMC'   )
>>>
>>> plt.legend(loc=0)
>>> plt.xlabel('wavelength[A]' , size=15 )
>>> plt.ylabel('Flux density [a.u.]' , size=15 )
>>> plt.xlim(1815,1835)
>>> plt.show()





This should give you something like this:

[image: _images/fig_Tutorial_4_2.png]
Now let’s do a correlation plot to see where the walkers are. For this we will use the function make_corner_plots which is define just below in this same page, in Tool to make corraltion plots .

>>> make_corner_plots( flat_samples )
>>> plt.show()





And it should give you something like:

[image: _images/fig_Tutorial_4_3.png]
And.. with that it’s done. Now you know how to use the MCMC implementation in zELDA.



Tool to make corraltion plots

This is just a code to plot the walkers and the probability distribution funtions of the posteriors of the MCMC analysis.

def make_corner_plots( my_chains_matrix ):

    import numpy as np
    import pylab as plt

    N_dim = 6

    ax_list = []

    label_list = [ 'log V' , 'log N' , 'log ta' , 'z' , 'log EW', 'Wi'  ]

    MAIN_VALUE_mean   = np.zeros(N_dim)
    MAIN_VALUE_median = np.zeros(N_dim)
    MAIN_VALUE_MAX    = np.zeros(N_dim)

    for i in range( 0 , N_dim ):

        x_prop = my_chains_matrix[ : , i ]

        x_prop_min = np.percentile( x_prop , 10 )
        x_prop_50  = np.percentile( x_prop , 50 )
        x_prop_max = np.percentile( x_prop , 90 )

        x_min = x_prop_50 - ( x_prop_max - x_prop_min ) * 1.00
        x_max = x_prop_50 + ( x_prop_max - x_prop_min ) * 1.00

        mamamask = ( x_prop > x_min ) * ( x_prop < x_max )

        MAIN_VALUE_mean[  i] = np.mean(       x_prop[ mamamask ] )
        MAIN_VALUE_median[i] = np.percentile( x_prop[ mamamask ] , 50 )

        HH , edges_HH = np.histogram( x_prop[ mamamask ] , 30 , range=[ x_prop_min , x_prop_max ] )

    plt.figure( figsize=(15,15) )

    Q_top = 80
    Q_low = 20

    for i in range( 0 , N_dim ):

        y_prop = my_chains_matrix[ : , i ]

        y_prop_min = np.percentile( y_prop , Q_low )
        y_prop_50  = np.percentile( y_prop , 50 )
        y_prop_max = np.percentile( y_prop , Q_top  )

        mask_y = ( y_prop > y_prop_min ) * ( y_prop < y_prop_max )

        y_min = y_prop_50 - np.std( y_prop[ mask_y ] )
        y_max = y_prop_50 + np.std( y_prop[ mask_y ] )

        for j in range( 0 , N_dim ):

            if i < j : continue

            x_prop = my_chains_matrix[ : , j ]

            x_prop_min = np.percentile( x_prop , Q_low )
            x_prop_50  = np.percentile( x_prop , 50 )
            x_prop_max = np.percentile( x_prop , Q_top )

            mask_x = ( x_prop > x_prop_min ) * ( x_prop < x_prop_max )

            x_min = x_prop_50 - np.std( x_prop[ mask_x ] )
            x_max = x_prop_50 + np.std( x_prop[ mask_x ] )

            ax = plt.subplot2grid( ( N_dim , N_dim ) , (i, j)  )

            ax_list += [ ax ]

            DDX = x_max - x_min
            DDY = y_max - y_min

            if i==j :

                H , edges = np.histogram( x_prop , 30 , range=[x_min,x_max] )

                ax.hist( x_prop , 30 , range=[x_min,x_max] , color='cornflowerblue' )

                ax.plot( [ MAIN_VALUE_median[i] , MAIN_VALUE_median[i] ] , [ 0.0 , 1e10 ] , 'k--' , lw=2 )

                ax.set_ylim( 0 , 1.1 * np.amax(H) )

            else :

                XX_min = x_min - DDX * 0.2
                XX_max = x_max + DDX * 0.2

                YY_min = y_min - DDY * 0.2
                YY_max = y_max + DDY * 0.2

                H , edges_y , edges_x = np.histogram2d( x_prop , y_prop , 30 , range=[[XX_min , XX_max],[YY_min , YY_max]] )

                y_centers = 0.5 * ( edges_y[1:] + edges_y[:-1] )
                x_centers = 0.5 * ( edges_x[1:] + edges_x[:-1] )

                H_min = np.amin( H )
                H_max = np.amax( H )

                N_bins = 10000

                H_Arr = np.linspace( H_min , H_max , N_bins )[::-1]

                fact_up_Arr = np.zeros( N_bins )

                TOTAL_H = np.sum( H )

                for iii in range( 0 , N_bins ):

                    mask = H > H_Arr[iii]

                    fact_up_Arr[iii] = np.sum( H[ mask ] ) / TOTAL_H

                H_value_68 = np.interp( 0.680 , fact_up_Arr , H_Arr )
                H_value_95 = np.interp( 0.950 , fact_up_Arr , H_Arr )

                ax.pcolormesh( edges_y , edges_x , H.T , cmap='Blues' )

                ax.contour( y_centers, x_centers , H.T , colors='k' , levels=[ H_value_95 ] )
                ax.contour( y_centers, x_centers , H.T , colors='r' , levels=[ H_value_68 ] )

                X_VALUE =  MAIN_VALUE_median[j]
                Y_VALUE =  MAIN_VALUE_median[i]

                ax.plot( [ X_VALUE , X_VALUE ] , [    -100 ,     100 ] , 'k--' , lw=2 )
                ax.plot( [    -100 ,     100 ] , [ Y_VALUE , Y_VALUE ] , 'k--' , lw=2 )

                ax.set_ylim( y_min-0.05*DDY , y_max+0.05*DDY )

            ax.set_xlim( x_min-0.05*DDX , x_max+0.05*DDX )

            if i==N_dim-1:
                ax.set_xlabel( label_list[j] , size=20 )

            if j==0 and i!=0 :
                ax.set_ylabel( label_list[i] , size=20 )

            if j!=0:
                plt.setp( ax.get_yticklabels(), visible=False)

            if j==0 and i==0:
                plt.setp( ax.get_yticklabels(), visible=False)

            if i!=len( label_list)-1 :
                plt.setp( ax.get_xticklabels(), visible=False)

    plt.subplots_adjust( left = 0.09 , bottom = 0.15 , right = 0.98 , top = 0.99 , wspace=0., hspace=0.)

    return None









            

          

      

      

    

  

    
      
          
            
  
Tutorial : Computing Lyman-alpha escape fractions

In this tutorial you will, hopefully, learn how to compute Lyman-alpha escape fractions with zELDA. Note that this part of the code compres directly from FLaREON ( https://github.com/sidgurun/FLaREON , Gurung-lopez et al. 2019b).


Default computation of escape fractions

Let’s move to one of the most powerful products of FLaREON: predicting huge amounts of Lyman alpha escape fractions.

However, zELDA implements several gas geometries and is optimized to obtain large amount of escape fractions with only one line of code, so let us expand this a little bit more. If we want to compute the escape fraction in a thin shell outflow with the configurations { V , logNH , ta } , { 200 , 19.5 , 0.1 }, { 300 , 20.0 ,     0.01 } and { 400 , 20.5 , 0.001 } we could do

>>> import Lya_zelda as Lya
>>> your_grids_location = '/This/Folder/Contains/The/Grids/'
>>> Lya.funcs.Data_location = your_grids_location

>>> Geometry = 'Thin_Shell'
>>> # Other options: 'Galactic Wind' or 'Bicone_X_Slab_In' or 'Bicone_X_Slab_Out'

>>> # Expansion velocity array in km/s
>>> V_Arr     = [  200 ,  300 , 400   ]

>>> # Logarithmic of column densities array in cm**-2
>>> logNH_Arr = [ 19.5 , 20.0 , 20.5  ]

>>> # Dust optical depth Array
>>> ta_Arr    = [  0.1 , 0.01 , 0.001 ]





Where Geometry indicates the gas distribution that is being used. ‘Bicone_X_Slab_In’ indicates the bicone geometry look through the outflow, while ‘Bicone_X_Slab_In’ is looking through the optically thick gas. The ‘Thin_Shell_Cont’ model does not support escape fractions yet.

Now let’s compute the escape fraction for this configurations:

>>> f_esc_Arr = Lya.RT_f_esc( Geometry , V_Arr , logNH_Arr , ta_Arr )





The variable f_esc_Arr is an Array of 1 dimension and length 3 that encloses the escape fractions for the configurations. In particular f_esc_Arr[i] is computed     using V_Arr[i] ,  logNH_Arr[i] and ta_Arr[i].



Deeper options on predicting the escape fraction

There are many algorithms implemented to compute f_esc_Arr. By default FLaREON uses a machine learning decision tree regressor and a parametric equation for the escape fraction as function of the dust optical depth (Go to the FLaREON presentation paper Gurung-Lopez et al. in prep for more information). These settings were chosen as default since they give the best performance. However the user might want to change the computing algorithm so here leave a guide with all the available options.


	MODE variable refers to mode in which the escape fraction is computed. There are 3 ways in which FLaREON can compute this. i) ‘Raw’ Using the raw data from     the RTMC (Orsi et al. 2012). ii) ‘Parametrization’ Assume a parametric equation between the escape fraction and the dust optical depth that allows to extend calculations outside the grid with the highest accuracy (in FLaREON). iii) ‘Analytic’ Use of the recalibrated analytic equations presented by Gurung-Lopez et al. 2018. Note that the analytic mode is not enabled in the bicone geometry although it is in the ‘Thin_Shel’ and ‘Galactic_Wind’


	Algorithm variable determines the technique used. This can be i) ‘Intrepolation’: lineal interpolation is used.  ii) ‘Machine_Learning’ machine learning is usd. To determine which machine learning algorithm you would like to use please, provide the variable Machine_Learning_Algorithm. The machine learning algorithms implemented are Decision tree regressor (‘Tree’), Random forest regressor (‘Forest’) and KN regressor (‘KN’). The machine learning is implemented by Sci-kit-learn, please, visit their webside for more information (http://scikit-learn.org/stable/).




Finally, any combination of MODE , Algorithm and Machine_Learning_Algorithm is allowed. However, note that the variable Machine_Learning_Algorithm is useles    s if Algorithm=’Intrepolation’.





            

          

      

      

    

  

    
      
          
            
  
funcs module

zELDA es a phantastic code!!


	
funcs.Analytic_f_esc_Thin_Shell(V_Arr, logNH_Arr, ta_Arr)

	Return the escape fraction computed analytically for the Thin Shell
(Gurung-lopez et al. 2019a)

Input:


	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Arr1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]





Output:


	fesc1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.Analytic_f_esc_Wind(V_Arr, logNH_Arr, ta_Arr)

	Return the escape fraction computed analytically for the Galactic Wind
(Gurung-lopez et al. 2019a)

Input:


	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]





Output:


	fesc1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.Check_if_DATA_files_are_found()

	This function checks if all the data files are in the set directory.

Input:

None : None

Output:


	Bool_1Bool
	1 if     found.
0 if not found.










	
funcs.Compute_Inflow_From_Outflow(w_Arr, f_out_Arr)

	Computes the line profile of an inflow from the line profiles of an
outflow

Input:


	w_Arr1-D sequence of floats
	wavelength where the line profile is evaluated.



	f_out_Arrfloat
	Outflow flux density (line profile)





Output:


	f_in_Arr1-D sequence of bool
	Inflow flux density (line profile)










	
funcs.Define_wavelength_for_NN(Delta_min=- 18.5, Delta_max=18.5, Nbins_tot=1000, Denser_Center=True)

	This function defines the wavelength used in for the neural netwroks.

Input


	Delta_minoptional float
	Defines the minimum rest frame wavelegnth with respecto to Lyman-alpha.

Default = -18.5



	Delta_minoptional float
	Defines the maximum rest frame wavelegnth with respecto to Lyman-alpha.

Default = +18.5



	Nbins_totoptional int
	Total number of wvelgnths bins.

Default = 1000



	Denser_Centeroptional bool
	Populates denser the regions close to Lyman-alpha

Default = True





Output


	rest_w_Arr1-D sequence of float
	Wavelgnth array where the line is evaluated in the rest frame.










	
funcs.Generate_a_line_for_training(z_t, V_t, log_N_t, t_t, F_t, log_EW_t, W_t, PNR_t, FWHM_t, PIX_t, DATA_LyaRT, Geometry, normed=False, scaled=True, Delta_min=- 18.5, Delta_max=18.5, Denser_Center=True, Nbins_tot=1000, T_IGM_Arr=None, w_IGM_Arr=None, RETURN_ALL=False)

	Creates a mock line profile at the desired redshift and returns all the NN
products.

Input


	z_tfloat
	Redshift



	V_tfloat
	Outflow expansion velocity [km/s]



	log_N_tfloat
	logarithmic of the neutral hydrogen column density in cm**-2



	t_tfloat
	Dust optical depth



	F_tfloat
	Total flux of the line. You can pass 1.



	log_EW_toptional, float
	Logarithmic of the rest frame intrisic equivalent width of the line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’



	W_toptional, float
	Rest frame intrisic width of the Lyman-alpha line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’



	PNR_tfloat
	Signal to noise ratio of the global maximum of the line profile.



	FWHM_tfloat
	Full width half maximum [A] of the experiment. This dilutes the line profile.



	PIX_tfloat
	Pixel size in wavelgnth [A] of the experiment. This binnes the line profile.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.



	Delta_minoptional float
	Defines the minimum rest frame wavelegnth with respecto to Lyman-alpha.

Default = -18.5



	Delta_minoptional float
	Defines the maximum rest frame wavelegnth with respecto to Lyman-alpha.

Default = +18.5



	Nbins_totoptional int
	Total number of wvelgnths bins.

Default = 1000



	Denser_Centeroptional bool
	Populates denser the regions close to Lyman-alpha

Default = True



	normedoptional bool
	If True, nomalizes the line profile.



	scaledoptinal bool
	If True, divides the line profile by its maximum.





Output


	rest_w_Arr1-D sequence of float
	Wavelgnth array where the line is evaluated in the rest frame.



	train_line1-D sequence of float
	Line profile.



	z_max_ifloat
	Redshift of the source if the global maximum of the spectrum is the
Lyman-alpha wavelegth.



	INPUT: 1-D secuence of float
	The actuall input to use in the Neural networks.










	
funcs.Generate_a_line_for_training_II(z_t, V_t, log_N_t, t_t, F_t, log_EW_t, W_t, PNR_t, FWHM_t, PIX_t, DATA_LyaRT, Geometry, normed=False, scaled=True, Delta_min=- 10.0, Delta_max=10.0, Denser_Center=True, Nbins_tot=500, T_IGM_Arr=None, w_IGM_Arr=None)

	Creates a mock line profile at the desired redshift and returns all the NN
products.

Input


	z_tfloat
	Redshift



	V_tfloat
	Outflow expansion velocity [km/s]



	log_N_tfloat
	logarithmic of the neutral hydrogen column density in cm**-2



	t_tfloat
	Dust optical depth



	F_tfloat
	Total flux of the line. You can pass 1.



	log_EW_toptional, float
	Logarithmic of the rest frame intrisic equivalent width of the line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’



	W_toptional, float
	Rest frame intrisic width of the Lyman-alpha line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’



	PNR_tfloat
	Signal to noise ratio of the global maximum of the line profile.



	FWHM_tfloat
	Full width half maximum [A] of the experiment. This dilutes the line profile.



	PIX_tfloat
	Pixel size in wavelgnth [A] of the experiment. This binnes the line profile.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.



	Delta_minoptional float
	Defines the minimum rest frame wavelegnth with respecto to Lyman-alpha.

Default = -12.5



	Delta_minoptional float
	Defines the maximum rest frame wavelegnth with respecto to Lyman-alpha.

Default = +12.5



	Nbins_totoptional int
	Total number of wvelgnths bins.

Default = 800



	Denser_Centeroptional bool
	Populates denser the regions close to Lyman-alpha

Default = True



	normedoptional bool
	If True, nomalizes the line profile.



	scaledoptinal bool
	If True, divides the line profile by its maximum.





Output


	rest_w_Arr1-D sequence of float
	Wavelgnth array where the line is evaluated in the rest frame.



	train_line1-D sequence of float
	Line profile.



	z_max_ifloat
	Redshift of the source if the global maximum of the spectrum is the
Lyman-alpha wavelegth.



	INPUT: 1-D secuence of float
	The actuall input to use in the Neural networks.










	
funcs.Generate_a_real_line(z_t, V_t, log_N_t, t_t, F_t, log_EW_t, W_t, PNR_t, FWHM_t, PIX_t, DATA_LyaRT, Geometry, T_IGM_Arr=None, w_IGM_Arr=None, RETURN_ALL=False)

	Makes a mock line profile for the Thin_Shell_Cont geometry.

Input


	z_tfloat
	Redshift



	V_tfloat
	Outflow expansion velocity [km/s]



	log_N_tfloat
	logarithmic of the neutral hydrogen column density in cm**-2



	t_tfloat
	Dust optical depth



	F_tfloat
	Total flux of the line. You can pass 1.



	log_EW_toptional, float
	Logarithmic of the rest frame intrisic equivalent width of the line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’



	W_toptional, float
	Rest frame intrisic width of the Lyman-alpha line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’



	PNR_tfloat
	Signal to noise ratio of the global maximum of the line profile.



	FWHM_tfloat
	Full width half maximum [A] of the experiment. This dilutes the line profile.



	PIX_tfloat
	Pixel size in wavelgnth [A] of the experiment. This binnes the line profile.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.





Output


	w_Arr1-D sequence of float
	Wavelgnth array where the line is evaluated in the observed frame.



	f_Arr1-D sequence of float
	Line profile flux density in arbitrary units.



	noise_Amplitude_Arr1-D sequence of float
	1-sigma level of the applyed noise.










	
funcs.Interpolate_Lines_Arrays_3D_grid(V_Arr, logNH_Arr, logta_Arr, x_Arr, Grid_Dictionary)

	Computes the escape fraction using the line profiles grids for many
configurations

Input:


	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	Logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]



	x_Arr1-D sequence of floats
	Frequency in Doppler units where the line prfile will be
evaluated.



	Grid_Dictionarypython dictionary
	All the necessary information for the interpoation. Loaded 
with load_Grid_Line().





Output:


	line_Arr2-D sequence of floats
	Flux density in arbitrary units. The first dimension matches
the dimension of the input configurations (e.g. V_Arr). The
second dimension matches x_Arr.










	
funcs.Interpolate_Lines_Arrays_3D_grid_MCMC(V_Value, logNH_Value, logta_Value, x_Arr, Grid_Dictionary)

	Computes the escape fraction using the line profiles grids for one
configuration. This is usefull for the Thin_Shell, Galactic_Wind and
Bicones configurations.

Input:


	V_Valuefloat
	Outflow bulk velocity [km/s]



	logNH_Valuefloat
	Logarithm of the neutral hydrogen column density [cm**-2]



	ta_Valuefloat
	Dust optical depth [no dimensions]



	x_Arr1-D sequence of floats
	Frequency in Doppler units where the line prfile will be
evaluated.



	Grid_Dictionarypython dictionary
	All the necessary information for the interpoation. Loaded 
with load_Grid_Line().





Output:


	axu_line_11-D sequence of floats
	Flux density in arbitrary units.










	
funcs.Interpolate_Lines_Arrays_5D_grid(V_Arr, logNH_Arr, logta_Arr, logEW_Arr, Wi_Arr, x_Arr, Grid_Dictionary)

	Computes the escape fraction using the line profiles grids for many
configurations. This is usefull for the Thin_Shell_Cont

Input:


	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	Logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]



	logEW_Arr1-D sequence of floats
	Logarithm of the rest frame equivalent width [A]



	Wi_Arr1-D sequence of floats
	Rest frame instrinc line width [A]



	x_Arr1-D sequence of floats
	Frequency in Doppler units where the line prfile will be
evaluated.



	Grid_Dictionarypython dictionary
	All the necessary information for the interpoation. Loaded 
with load_Grid_Line().





Output:


	linew_Arr2-D sequence of floats
	Flux density in arbitrary units. The first dimension matches
the dimension of the input configurations (e.g. V_Arr). The
second dimension matches x_Arr.
Flux density in arbitrary units.










	
funcs.Interpolate_Lines_Arrays_5D_grid_MCMC(V_Value, logNH_Value, logta_Value, logEW_Value, Wi_Value, x_Arr, Grid_Dictionary)

	Computes the escape fraction using the line profiles grids for many
configurations. This is usefull for the Thin_Shell_Cont

Input:


	V_Valuefloat
	Outflow bulk velocity [km/s]



	logNH_Valuefloat
	Logarithm of the neutral hydrogen column density [cm**-2]



	ta_Valuefloat
	Dust optical depth [no dimensions]



	logEW_Valuefloat
	Logarithm of the rest frame equivalent width [A]



	Wi_Valuefloat
	Rest frame instrinc line width [A]



	x_Arr1-D sequence of floats
	Frequency in Doppler units where the line prfile will be
evaluated.



	Grid_Dictionarypython dictionary
	All the necessary information for the interpoation. Loaded 
with load_Grid_Line().





Output:


	axu_line_11-D sequence of floats
	Flux density in arbitrary units.










	
funcs.Interpolate_f_esc_Arrays_2D_grid(V_Arr, logNH_Arr, ta_Arr, Grid_Dictionary, Geometry)

	Computes the escape fraction using the escape fraction grids of parameters

Input:


	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]



	Grid_Dictionarypython dictionary
	Constains the grid to compute the escape fraction. Loaded with
load_Grid_fesc().



	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’









Output:


	f_esc_Arr1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.Interpolate_fesc_Arrays_3D_grid(V_Arr, logNH_Arr, ta_Arr, Grid_Dictionary)

	Computes the escape fraction using the escape fraction grids of parameters

Input:


	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]



	Grid_Dictionarypython dictionary
	Constains the grid to compute the escape fraction. Loaded with
load_Grid_fesc().





Output:


	f_esc_Arr_evaluated1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.Linear_ND_interpolator(N_dim, Coor_props_Matrix, Coor_grid_list, Field_in_grid_Matrix)

	Interpolates in an arbitrary dimension space


	N_dimint
	Number of dimensions.



	Coor_props_MatrixList of N_dim float values
	Coordenates in the N_dim space to evaluate.
For example [ X , Y , Z ]



	Coor_grid_listList of N_dim 1-D sequence of floats
	For example, if there is a field evaluated in X_Arr, Y_Arr, Z_Arr
[ X_Arr , Y_Arr , Z_Arr ]





Field_in_grid_Matrix : numpy array with the field to interpolate

Field_at_the_prob_point :






	
funcs.Load_NN_model(Mode, iteration=1)

	Loads the saved parameters of the deep neural networks

Input


	Modestring
	‘Inflow’ or ‘Outflow’



	iterationoptional int
	Number of the iteration. Currently only 1
Default 1





Output


	machine_datapython dictionaty
	Contains all the info for the DNN










	
funcs.MCMC_Analysis_sampler_5(w_target_Arr, f_target_Arr, s_target_Arr, FWHM, N_walkers, N_burn, N_steps, Geometry, DATA_LyaRT, log_V_in=None, log_N_in=None, log_t_in=None, z_in=None, log_E_in=None, W_in=None, progress=True, FORCE_z=False, Inflow=False)

	Full MCMC anaylsis for the Thin_Shell_Cont

Input


	w_tar_Arr1-D sequence of floats
	wavelength where the densit flux is evaluated



	f_tar_Arr1-D sequence of floats
	Densit flux is evaluated



	s_tar_Arr1-D sequence of floats
	Uncertainty of the densit flux is evaluated



	FWHMfloat
	Full width half maximum [A] of the experiment.



	N_walkersint
	Number of walkers



	N_dimint
	Number of dimensions (6)



	N_burnint
	Number of steps in the burnin-in phase



	N_stepsint
	Number of steps



	Geometrystring
	Outflow geometry to use.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometry_Modeoptinal string
	Changes from inflow (‘Inflow’) to outflow (‘Outflow’)
Default: ‘Outflow’



	log_V_inoptional 1-D sequence of floats.
	Range of the logarithm of the bulk velocity
log_V_in[0] is the minimum
log_V_in[1] is the maximum



	log_N_inoptional 1-D sequence of floats.
	Range of the logarithm of the neutral hydrogen column density
log_N_in[0] is the minimum
log_N_in[1] is the maximum



	log_t_inoptional 1-D sequence of floats.
	Range of the logarithm of the dust optical depth
log_t_in[0] is the minimum
log_t_in[1] is the maximum



	z_inoptional 1-D sequence of floats.
	Redshift range to be considered.
z_in[0] is the minimum redshift
z_in[1] is the maximum redshift



	log_E_inoptional 1-D sequence of floats.
	Range of the logarithm of the intrinsic equivalent width
log_E_in[0] is the minimum
log_E_in[1] is the maximum



	W_inoptional 1-D sequence of floats.
	Instrinsic line width range to be considered.
W_in[0] is the minimum redshift
W_in[1] is the maximum redshift



	progressoptional bool
	If True shows the MCMC progress.
Default True



	FORCE_zoptional bool
	If True, force the redshift to be inside z_in



	Inflowoptional bool
	If True, fits and inflow instead of an outflow.
Default False. So by default, it fits outflows.





Output


	samplesemcee python packge object.
	Contains the information of the MCMC.










	
funcs.MCMC_get_region_6D(MODE, w_tar_Arr, f_tar_Arr, s_tar_Arr, FWHM, PIX, DATA_LyaRT, Geometry, Geometry_Mode='Outflow')

	Computes the region of where the walkers are initialize

Input


	MODEstring
	Method, DNN or PSO



	w_tar_Arr1-D sequence of floats
	wavelength where the densit flux is evaluated



	f_tar_Arr1-D sequence of floats
	Densit flux is evaluated



	s_tar_Arr1-D sequence of floats
	Uncertainty of the densit flux is evaluated



	FWHMfloat
	Full width half maximum [A] of the experiment.



	PIXfloat
	Pixel size in wavelgnth [A] of the experiment.



	w_minfloat
	minimum wavelength in the observed frame [A] to use. This matches the minimum
wavelgnth of wave_pix_Arr (see below).



	w_maxfloat
	maximum  wavelength in the observed frame [A] to use. This might not be exactly
the maximum wavelgnth of wave_pix_Arr (see below) due to pixelization.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.



	Geometry_Modeoptinal string
	Changes from inflow (‘Inflow’) to outflow (‘Outflow’)
Default: ‘Outflow’





Output


	log_V_in1-D sequence of floats.
	Range of the logarithm of the bulk velocity
log_V_in[0] is the minimum
log_V_in[1] is the maximum



	log_N_in1-D sequence of floats.
	Range of the logarithm of the neutral hydrogen column density
log_N_in[0] is the minimum
log_N_in[1] is the maximum



	log_t_in1-D sequence of floats.
	Range of the logarithm of the dust optical depth
log_t_in[0] is the minimum
log_t_in[1] is the maximum



	z_in1-D sequence of floats.
	Redshift range to be considered.
z_in[0] is the minimum redshift
z_in[1] is the maximum redshift



	log_E_in1-D sequence of floats.
	Range of the logarithm of the intrinsic equivalent width
log_E_in[0] is the minimum
log_E_in[1] is the maximum



	W_in1-D sequence of floats.
	Instrinsic line width range to be considered.
W_in[0] is the minimum redshift
W_in[1] is the maximum redshift










	
funcs.NN_convert_Obs_Line_to_proxy_rest_line(w_obs_Arr, f_obs_Arr, s_obs_Arr=None, normed=False, scaled=True)

	Converts an observed line profile to the rest frame of the maximum
of the line profile.

Input


	w_obs_Arr1-D sequence of floats
	wavelength where the line profile is evaluated.



	f_obs_Arr1-D sequence of floats
	Flux density of the observed line profile.



	s_obs_Arroptional 1-D sequence of floats
	Uncertainty in the flux density of the observed line profile.



	normedoptional bool
	If True, nomalizes the line profile.



	scaledoptinal bool
	If True, divides the line profile by its maximum.





Output


	w_rest_Arr1-D sequence of floats
	wavelength where the line profile is evaluated in the rest frame
of the global maximum



	Delta_rest_Arr1-D sequence of floats
	w_rest_Arr - Lyman-alpha.



	f_rest_Arr1-D sequence of floats
	Flux density in the rest frame of the global maximum



	z_maxfloat
	Redshift if the global maximum is the Lyaman-alpha wavelength





if s_obs_Arr is not None it also returns:
s_rest_Arr : 1-D sequence of floats


Uncertainty of the flux density in the rest frame of the global maximum









	
funcs.NN_generate_random_outflow_props(N_walkers, log_V_in, log_N_in, log_t_in, Allow_Inflows=True)

	Generates random poperties for the Thin_Shell, Galactic_Wind, etc. 
(Not for Thin_Shell_Cont)

Input


	N_walkersint
	Number of walkers



	log_V_inoptional 1-D sequence of floats.
	Range of the logarithm of the bulk velocity
log_V_in[0] is the minimum
log_V_in[1] is the maximum



	log_N_inoptional 1-D sequence of floats.
	Range of the logarithm of the neutral hydrogen column density
log_N_in[0] is the minimum
log_N_in[1] is the maximum



	log_t_inoptional 1-D sequence of floats.
	Range of the logarithm of the dust optical depth
log_t_in[0] is the minimum
log_t_in[1] is the maximum



	Allow_Inflowsoptional Bool
	If True it also return negative values of V in the same range.
Default True





Output


	init_V_Arr1-D sequence of floats
	Expansion velocity



	init_log_N_Arr1-D sequence of floats
	Logarithms of the column density



	init_log_t_Arr1-D sequence of floats
	Logarithms of the dust optical depth










	
funcs.NN_generate_random_outflow_props_5D(N_walkers, log_V_in, log_N_in, log_t_in, log_E_in, log_W_in, MODE='Outflow')

	Generates random poperties for the Thin_Shell_Cont

Input


	N_walkersint
	Number of walkers



	log_V_inoptional 1-D sequence of floats.
	Range of the logarithm of the bulk velocity
log_V_in[0] is the minimum
log_V_in[1] is the maximum



	log_N_inoptional 1-D sequence of floats.
	Range of the logarithm of the neutral hydrogen column density
log_N_in[0] is the minimum
log_N_in[1] is the maximum



	log_t_inoptional 1-D sequence of floats.
	Range of the logarithm of the dust optical depth
log_t_in[0] is the minimum
log_t_in[1] is the maximum



	log_E_inoptional 1-D sequence of floats.
	Range of the logarithm of the instrinsic equivalent width
log_E_in[0] is the minimum
log_E_in[1] is the maximum



	log_W_inoptional 1-D sequence of floats.
	Range of the logarithm of the intrinsic width of the line
log_W_in[0] is the minimum
log_W_in[1] is the maximum



	MODEoptional string
	‘Outflow’ for outflows ‘Inflow’ for inflows





Output


	init_V_Arr1-D sequence of floats
	Expansion velocity



	init_log_N_Arr1-D sequence of floats
	Logarithms of the column density



	init_log_t_Arr1-D sequence of floats
	Logarithms of the dust optical depth



	init_log_E_Arr1-D sequence of floats
	Logarithms of the instrinsic equivalent width



	init_log_W_Arr1-D sequence of floats
	Logarithms of the intrinsic width of the line










	
funcs.NN_measure(w_tar_Arr, f_tar_Arr, s_tar_Arr, FWHM_tar, PIX_tar, loaded_model, w_rest_Machine_Arr, N_iter=None, normed=False, scaled=True, Delta_min=- 18.5, Delta_max=18.5, Nbins_tot=1000, Denser_Center=True, Random_z_in=None)

	Generates random poperties for the Thin_Shell_Cont

Input


	w_tar_Arr1-D sequence of floats
	wavelength where the densit flux is evaluated



	f_tar_Arr1-D sequence of floats
	Densit flux is evaluated



	s_tar_Arr1-D sequence of floats
	Uncertainty of the densit flux is evaluated



	FWHMfloat
	Full width half maximum [A] of the experiment.



	PIX_tarfloat
	Pixelization of the line profiles due to the experiment [A]



	loaded_modelpython dictionaty
	Contains all the info for the DNN form Load_NN_model()



	w_rest_Machine_Arr1-D sequence of floats
	wavelength used by the INPUT of the DNN



	N_iteroptional int
	Number of Monte Carlo iterations of the observed espectrum.
If None, no iteration is done.
Default None



	Delta_minoptional float
	Defines the minimum rest frame wavelegnth with respecto to Lyman-alpha.

Default = -18.5



	Delta_minoptional float
	Defines the maximum rest frame wavelegnth with respecto to Lyman-alpha.

Default = +18.5



	Nbins_totoptional int
	Total number of wvelgnths bins.

Default = 1000



	Denser_Centeroptional bool
	Populates denser the regions close to Lyman-alpha

Default = True



	normedoptional bool
	If True, nomalizes the line profile.



	scaledoptinal bool
	If True, divides the line profile by its maximum.



	Random_z_inoptinal list of legnth=2
	List with the minimum and maximum redshift for doing Feature importance analysis.
For example [0.01,4.0]. This variable will input a random redshift with in the 
interval as a proxy redshift. This variable should only be used when doing a 
feature importance analysis. If you are not doing it, leave it as None. Otherwide 
you will get, probably, bad results. For example [0.01,4.0].





Output


	if N_iter is None: 
	
	Sol1-D sequence of float
	Array with the solution of the observed spectrum. No Monte Carlo perturbation.



	z_Solfloat
	Best resdhift







	if N_iter is a float:
	Sol and z_sol and


	log_V_sol_2_Arr1-D sequence
	Logarithm of the expasion velocity



	log_N_sol_2_Arr1-D sequence
	Logarithm of the neutral hydrogen column density



	log_t_sol_2_Arr1-D sequence
	Logarithm of the dust optical depth



	z_sol_2_Arr1-D sequence
	redshift



	log_E_sol_2_Arr1-D sequence
	Logarithm of the intrinsic equivalent width



	log_W_sol_2_Arr1-D sequence
	Logarithm of the instrinsic width of the line














	
funcs.NN_measure_II(w_tar_Arr, f_tar_Arr, s_tar_Arr, FWHM_tar, PIX_tar, loaded_model, w_rest_Machine_Arr, N_iter=None, normed=False, scaled=True, Delta_min=- 10.0, Delta_max=10.0, Nbins_tot=500, Denser_Center=True, Random_z_in=None)

	Generates random poperties for the Thin_Shell_Cont

Input


	w_tar_Arr1-D sequence of floats
	wavelength where the densit flux is evaluated



	f_tar_Arr1-D sequence of floats
	Densit flux is evaluated



	s_tar_Arr1-D sequence of floats
	Uncertainty of the densit flux is evaluated



	FWHMfloat
	Full width half maximum [A] of the experiment.



	PIX_tarfloat
	Pixelization of the line profiles due to the experiment [A]



	loaded_modelpython dictionaty
	Contains all the info for the DNN form Load_NN_model()



	w_rest_Machine_Arr1-D sequence of floats
	wavelength used by the INPUT of the DNN



	N_iteroptional int
	Number of Monte Carlo iterations of the observed espectrum.
If None, no iteration is done.
Default None



	Delta_minoptional float
	Defines the minimum rest frame wavelegnth with respecto to Lyman-alpha.

Default = -18.5



	Delta_minoptional float
	Defines the maximum rest frame wavelegnth with respecto to Lyman-alpha.

Default = +18.5



	Nbins_totoptional int
	Total number of wvelgnths bins.

Default = 1000



	Denser_Centeroptional bool
	Populates denser the regions close to Lyman-alpha

Default = True



	normedoptional bool
	If True, nomalizes the line profile.



	scaledoptinal bool
	If True, divides the line profile by its maximum.



	Random_z_inoptinal list of legnth=2
	List with the minimum and maximum redshift for doing Feature importance analysis.
For example [0.01,4.0]. This variable will input a random redshift with in the
interval as a proxy redshift. This variable should only be used when doing a
feature importance analysis. If you are not doing it, leave it as None. Otherwide
you will get, probably, bad results. For example [0.01,4.0].





Output


	if N_iter is None:
	
	Sol1-D sequence of float
	Array with the solution of the observed spectrum. No Monte Carlo perturbation.



	z_Solfloat
	Best resdhift







	if N_iter is a float:
	Sol and z_sol and


	log_V_sol_2_Arr1-D sequence
	Logarithm of the expasion velocity



	log_N_sol_2_Arr1-D sequence
	Logarithm of the neutral hydrogen column density



	log_t_sol_2_Arr1-D sequence
	Logarithm of the dust optical depth



	z_sol_2_Arr1-D sequence
	redshift



	log_E_sol_2_Arr1-D sequence
	Logarithm of the intrinsic equivalent width



	log_W_sol_2_Arr1-D sequence
	Logarithm of the instrinsic width of the line














	
funcs.PSO_Analysis(w_tar_Arr, f_tar_Arr, FWHM, PIX, DATA_LyaRT, Geometry, n_particles, n_iters)

	Does a PSO analysis to find in a fast way a close good fit

Input


	w_tar_Arr1-D sequence of float
	wavelength where the observed density flux is evaluated.



	f_tar_Arr1-D sequence of float
	Observed flux density



	FWHMfloat
	Full width half maximum [A] of the experiment.



	PIXfloat
	Pixel size in wavelgnth [A] of the experiment.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.



	n_particlesint
	Number of particles in the PSO



	n_itersint
	Number of steps in the PSO





Output


	costfloat
	Cost of the best configuration



	pos1-D sequence of floats
	Position of the best configuration










	
funcs.PSO_compute_xi_2_MANY(X, w_tar_Arr, f_tar_Arr, FWHM, PIX, DATA_LyaRT, Geometry)

	Compute the chi esquare for the PSO analysis for many configurations

Input


	x: 1-D sequence of float
	
	Contains the parameters of the mode:
	x[0] = logarithim of the expansion velocity
x[1] = logarithim of the neutral hydrogen column density
x[2] = logarithim of the dust optical depth
x[3] = redshift
x[4] = logarithm of the intrinsic equivalent width
x[5] = intrinsic width







	w_tar_Arr1-D sequence of float
	wavelength where the observed density flux is evaluated.



	f_tar_Arr1-D sequence of float
	Observed flux density



	FWHMfloat
	Full width half maximum [A] of the experiment.



	PIXfloat
	Pixel size in wavelgnth [A] of the experiment.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.





Output


	xi_2_Arr1-D sequence of float
	Chi square of the configurations










	
funcs.PSO_compute_xi_2_ONE_6D(x, w_tar_Arr, f_tar_Arr, FWHM, PIX, DATA_LyaRT, Geometry, T_IGM_Arr=None, w_IGM_Arr=None)

	Compute the chi esquare for the PSO analysis

Input


	x: 1-D sequence of float
	
	Contains the parameters of the mode:
	x[0] = logarithim of the expansion velocity
x[1] = logarithim of the neutral hydrogen column density
x[2] = logarithim of the dust optical depth
x[3] = redshift
x[4] = logarithm of the intrinsic equivalent width
x[5] = intrinsic width







	w_tar_Arr1-D sequence of float
	wavelength where the observed density flux is evaluated.



	f_tar_Arr1-D sequence of float
	Observed flux density



	FWHMfloat
	Full width half maximum [A] of the experiment.



	PIXfloat
	Pixel size in wavelgnth [A] of the experiment.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.





Output


	xi_2float
	Chi square of the configuration



	w_pso_Arr1-D sequence of floats
	Wavelgnth of the line profile computed by the PSO



	my_f_pso_Arr1-D sequence of floats
	Flux density of the line profile computed by the PSO










	
funcs.Prior_f(theta)

	Decides when a walker from the MCMC is out for the Thin_Shell,
Galactic wind and bicones.

Input


	theta1-D sequence of float
	
	Contains the parameters of the mode:
	theta[0] = logarithim of the expansion velocity
theta[1] = logarithim of the neutral hydrogen column density
theta[2] = logarithim of the dust optical depth









Output

True  if the walker is  inside
False if the walker is outside






	
funcs.Prior_f_5(theta)

	Decides when a walker from the MCMC is out for the Thin_Shell_Cont,

Input


	theta1-D sequence of float
	
	Contains the parameters of the mode:
	theta[0] = logarithim of the expansion velocity
theta[1] = logarithim of the neutral hydrogen column density
theta[2] = logarithim of the dust optical depth
theta[3] = redshift
theta[4] = logarithm of the intrinsic equivalent width
theta[5] = intrinsic width









Output

True  if the walker is  inside
False if the walker is outside






	
funcs.RT_Line_Profile(Geometry, wavelength_Arr, V_Arr, logNH_Arr, ta_Arr, logEW_Arr=None, Wi_Arr=None, MODE_CONT='FULL')

	Return the Lyman alpha line profile for a given outflow properties.

Input:


	Geometrystring
	The outflow geometry to use: Options: ‘Thins_Shell’,
‘Galactic_Wind’ , ‘Bicone_X_Slab’, ‘Thin_Shell_Cont’



	wavelength_Arr1-D sequence of floats
	Array with the wavelength vales where the line 
profile is computed. The units are meters, i.e.,
amstrongs * 1.e-10.



	V_Arr1-D sequence of float 
	Array with the expansion velocity of the outflow. The unit
are km/s.



	logNH_Arr1-D sequence of float
	Array with the logarithim of the outflow neutral hydrogen 
column density. The units of the colum density are in c.g.s,
i.e, cm**-2.



	ta_Arr1-D sequence of float
	Array with the dust optic depth of the outflow.



	ta_Value1-D sequence of bool
	Dust optical depth [no dimensions]



	logEW_ValueOptional 1-D sequence of bool
	Logarithm of rest frame equiavlent width [A]
Default = None



	Wi_ValueOptional 1-D sequence of bool
	Intrinsic width line in the rest frame [A]
Default = None



	MODEoptinal string.
	For the ‘Thin_Shell_Cont’ ONLY. Defines the grid to be loaded.
MODE_CONT=’FULL’  loads a very dense  grid. ~12GB of RAM.
MODE_CONT=’LIGHT’ loads a more sparse grid. ~ 2GB of RAM.





Output:


	lines_Arr2-D sequence of float
	The Lyman alpha line profiles. lines_Arr[i] is the line profile 
computed at the wavelengths wavelength_Arr for wich V_Arr[i] , 
logNH_Arr[i] , ta_Arr[i] , Inside_Bicone_Arr[i].










	
funcs.RT_Line_Profile_MCMC(Geometry, wavelength_Arr, V_Value, logNH_Value, ta_Value, DATA_LyaRT, logEW_Value=None, Wi_Value=None)

	Return one and only one Lyman alpha line profile for a given outflow properties.
This function is especial to run MCMCs or PSO.

Input:


	Geometrystring
	The outflow geometry to use: Options: ‘Thins_Shell’,
‘Galactic_Wind’ , ‘Bicone_X_Slab’, ‘Thin_Shell_Cont’



	wavelength_Arr1-D sequence of floats
	Array with the wavelength vales where the line
profile is computed. The units are meters, i.e.,
amstrongs * 1.e-10.



	V_Valuefloat
	Value of the expansion velocity of the outflow. The unit
are km/s.



	logNH_Valuefloat
	Value of the logarithim of the outflow neutral hydrogen
column density. The units of the colum density are in c.g.s,
i.e, cm**-2.



	ta_Valuefloat
	Value of the dust optic depth of the outflow.



	DATA_LyaRTDictionay
	This dictonary have all the information of the grid.
This dictionary can be loaded with the function : 
load_Grid_Line, for example:

DATA_LyaRT = load_Grid_Line( ‘Thin_Shell’ )





Output:


	lines_Arr1-D sequence of float
	The Lyman alpha line profile.










	
funcs.RT_f_esc(Geometry, V_Arr, logNH_Arr, ta_Arr, MODE='Parametrization', Algorithm='Intrepolation', Machine_Learning_Algorithm='Tree')

	Return the Lyman alpha escape fraction for a given outflow properties.

Input


	Geometrystring
	The outflow geometry to use: Options: ‘Thins_Shell’,
‘Galactic_Wind’ , ‘Bicone_X_Slab’.



	V_Arr1-D sequence of float
	Array with the expansion velocity of the outflow. The unit
are km/s.



	logNH_Arr1-D sequence of float
	Array with the logarithim of the outflow neutral hydrogen
column density. The units of the colum density are in c.g.s,
i.e, cm**-2.



	ta_Arr1-D sequence of float
	Array with the dust optic depth of the outflow.



	MODEoptional string
	
	Set the mode in which the escape fraction is computed. It can be:
	
Analytic        : it uses an analytic equation fitted to the output of the RT MC code.
Parametrization : it computes the escape fraction using a function that depends on the


dust optical depts as in Neufeld et al. 1990.




Raw             : it uses directly the output of the RT MC code.




Default = ‘Parametrization’







	Algorithmoptional string
	
	Set how the escape fraction is computed. If MODE=’Analytic’ then this varialbe is useless.
	Intrepolation    : Direct lineal interpolation.
Machine_Learning : uses machine learning algorithms





Default = ‘Intrepolation’



	Machine_Learning_Algorithmoptial string
	
	Set the machine learning algorith used. Available:
	Tree   : decision tree
Forest : random forest
KN     : KN





Default = ‘Tree’





Output


	lines_Arr1-D sequence of float
	The Lyman alpha escape fraction for V_Arr[i] ,
logNH_Arr[i] , ta_Arr[i] , Inside_Bicone_Arr[i].










	
funcs.RT_f_esc_Analytic(Geometry, V_Arr, logNH_Arr, ta_Arr)

	Return the escape fraction computed analytically
(Gurung-lopez et al. 2019a, 2019b)

Input:
Geometry : String


Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’





	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Arr1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]





Output:


	fesc1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.RT_f_esc_Interpolation_Parameters(Geometry, V_Arr, logNH_Arr, ta_Arr, Machine_Learning_Algorithm=None)

	Computes the escape fraction using the escape fraction grids of parameters

Input:


	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’







	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]



	Machine_Learning_AlgorithmString
	Kind of algorithm: ‘KN’, ‘Grad’, ‘Tree’ or ‘Forest’





Output:


	f_esc_Arr1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.RT_f_esc_Interpolation_Values(Geometry, V_Arr, logNH_Arr, ta_Arr, Machine_Learning_Algorithm=None)

	Computes the escape fraction using the escape fraction grids of values

Input:


	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’







	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]



	Machine_Learning_AlgorithmString
	Kind of algorithm: ‘KN’, ‘Grad’, ‘Tree’ or ‘Forest’





Output:


	f_esc_Arr1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.RT_f_esc_Machine_Parameter(Geometry, V_Arr, logNH_Arr, ta_Arr, Machine_Learning_Algorithm='Tree')

	Anallytic expression of the escape fraction as a function of the
dust optical depth (Gurung-lopez et al. 2019b). This uses the parametric
expression of the escape fraction.

Input:


	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’







	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]



	Machine_Learning_Algorithmstring
	Machine learning algorithm: ‘KN’, ‘Grad’, ‘Tree’ or ‘Forest’





Output:


	f_esc_Arr1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.RT_f_esc_Machine_Values(Geometry, V_Arr, logNH_Arr, ta_Arr, Machine_Learning_Algorithm='Tree')

	Anallytic expression of the escape fraction as a function of the
dust optical depth (Gurung-lopez et al. 2019b). This uses the directly
the escape fraction.

Input:


	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’







	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]



	Machine_Learning_Algorithmstring
	Machine learning algorithm: ‘KN’, ‘Grad’, ‘Tree’ or ‘Forest’





Output:


	f_esc_Arr1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.Signal_to_noise_estimator(w_Arr, Line_Arr, w_line)

	Estimates the signal to noise of a line profile

Input


	w_Arr1-D sequence of float
	wavelgnth array



	Line_Arr1-D sequence float
	Flux density of the line profile.



	w_linefloat
	wavelgnth of the line





Output


	SNRfloat
	Signal to noise ratio.










	
funcs.Test_1()

	Script to test if everything is working fine.






	
funcs.Test_2()

	Script to test if everything looks fine.






	
funcs.Treat_A_Line_To_NN_Input(w_Arr, f_Arr, PIX, FWHM, Delta_min=- 18.5, Delta_max=18.5, Nbins_tot=1000, Denser_Center=True, normed=False, scaled=True)

	Convert a line profile and the usefull information into the INPUT of the NN.

Input


	w_Arr1-D sequence of floats
	Wavelgnth of the line profile in the observed frame. [A]



	f_Arr1-D sequence of floats
	Flux density of the observed line profile in arbitrary units.



	FWHMfloat
	Full width half maximum [A] of the experiment.



	PIXfloat
	Pixel size in wavelgnth [A] of the experiment.



	Delta_minoptional float
	Defines the minimum rest frame wavelegnth with respecto to Lyman-alpha.

Default = -18.5



	Delta_minoptional float
	Defines the maximum rest frame wavelegnth with respecto to Lyman-alpha.

Default = +18.5



	Nbins_totoptional int
	Total number of wvelgnths bins.

Default = 1000



	Denser_Centeroptional bool
	Populates denser the regions close to Lyman-alpha

Default = True



	normedoptional bool
	If True, nomalizes the line profile.



	scaledoptinal bool
	If True, divides the line profile by its maximum.





Output


	rest_w_Arr1-D sequence of float
	Wavelgnth array where the line is evaluated in the rest frame.



	NN_line1-D sequence of float
	Line profile evaluated in rest_w_Arr after normalization or scaling.



	z_max_ifloat
	Redshift of the source if the global maximum of the spectrum is the
Lyman-alpha wavelegth.



	INPUT: 1-D secuence of float
	The actuall input to use in the Neural networks.










	
funcs.Treat_A_Line_To_NN_Input_II(w_Arr, f_Arr, PIX, FWHM, Delta_min=- 10.0, Delta_max=10.0, Nbins_tot=500, Denser_Center=True, normed=False, scaled=True)

	Convert a line profile and the usefull information into the INPUT of the NN.

Input


	w_Arr1-D sequence of floats
	Wavelgnth of the line profile in the observed frame. [A]



	f_Arr1-D sequence of floats
	Flux density of the observed line profile in arbitrary units.



	FWHMfloat
	Full width half maximum [A] of the experiment.



	PIXfloat
	Pixel size in wavelgnth [A] of the experiment.



	Delta_minoptional float
	Defines the minimum rest frame wavelegnth with respecto to Lyman-alpha.

Default = -18.5



	Delta_minoptional float
	Defines the maximum rest frame wavelegnth with respecto to Lyman-alpha.

Default = +18.5



	Nbins_totoptional int
	Total number of wvelgnths bins.

Default = 1000



	Denser_Centeroptional bool
	Populates denser the regions close to Lyman-alpha

Default = True



	normedoptional bool
	If True, nomalizes the line profile.



	scaledoptinal bool
	If True, divides the line profile by its maximum.





Output


	rest_w_Arr1-D sequence of float
	Wavelgnth array where the line is evaluated in the rest frame.



	NN_line1-D sequence of float
	Line profile evaluated in rest_w_Arr after normalization or scaling.



	z_max_ifloat
	Redshift of the source if the global maximum of the spectrum is the
Lyman-alpha wavelegth.



	INPUT: 1-D secuence of float
	The actuall input to use in the Neural networks.










	
funcs.bin_one_line(wave_Arr_line, Line_Prob_Arr, new_wave_Arr, Bin, same_norm=False)

	This functions bins the line profile mimicking the pixelization in a CCD.

Input


	wave_Arr_line1-D sequence of float
	Array with the Wavelength where the spectrum is evaluated.
Same units as Bin. This has to be sorted.



	Line_Prob_Arr1-D sequence of float
	Arrays with the flux of the spectrum.



	new_wave_Arr1-D sequence of float
	Array with the nex wavelgnth where the fline profile will be
interpolated



	Binfloat
	Bin size.



	same_normoptional bool.
	If true return a line with the same normalization as the input





Output


	binned_line1-D sequence of float
	Spectrum after the convolution










	
funcs.convert_gaussian_FWHM_to_sigma(FWHM_Arr)

	This function computes the sigma of a gaussian from its FWHM.

Input


	FWHM_Arr1-D sequence of float
	Array with the Full Width Half Maximum that you 
want to convert





Output


	sigma_Arr1-D sequence of float
	The width of the FWHM_Arr










	
funcs.convert_lamda_into_x(lamda, T4=None)

	This function converts from frequency in Doppler
units to wavelength

Input:


	lamda1-D sequence of float
	wavelength



	T4optional float
	Temperature in units of 10**4 K:
T4 = T[k] / 10**4





Output:


	x_Arr1-D sequence of float
	Frequency in Doppler units.










	
funcs.convert_x_into_lamda(x, T4=None)

	This function converts from frequency in Doppler
units to wavelength

Input:


	x1-D sequence of float
	Frequency in Doppler units.



	T4optional float
	Temperature in units of 10**4 K:
T4 = T[k] / 10**4





Output:


	w_Arr1-D sequence of float
	wavelength.










	
funcs.define_RT_parameters(T4=None)

	This function gives the parameters use to compute useful 
variables when working with radiative transfer.

Input:


	T4optional float
	Temperature in units of 10**4 K:
T4 = T[k] / 10**4





Output:


	nu0float
	Lyaman-alpha frequency.





Dv : float






	
funcs.dilute_line(wave_Arr, Spec_Arr, FWHM)

	This functions dilutes a given spectrum by convolving with a gaussian
filter.

Input


	wave_Arr1-D sequence of float
	Array with the Wavelength where the spectrum is evaluated.
Same units as FWHM_Arr. This has to be sorted.



	Spec_Arr1-D sequence of float
	Arrays with the flux of the spectrum.



	FWHM_Arr1-D sequence of float
	Array with the Full width half maximuum of of the gaussian
to convolve.
If FWHM_Arr is a single value, it uses the same value across
the x_Arr range.
If FWHM is a 1-D sequence, a different value of width of
the gaussian is used. In this case, the length of this array
has to be the same as wave_Arr and Spec_Arr.



	same_normoptional bool.
	If true return a line with the same normalization as the input





Output


	new_Line1-D sequence of float
	Spectrum after the convolution










	
funcs.dilute_line_changing_FWHM(wave_Arr, Spec_Arr, FWHM_Arr, same_norm=False)

	This functions dilutes a given spectrum by convolving with a gaussian 
filter.

Input


	wave_Arr1-D sequence of float
	Array with the Wavelength where the spectrum is evaluated.
Same units as FWHM_Arr. This has to be sorted.



	Spec_Arr1-D sequence of float
	Arrays with the flux of the spectrum.



	FWHM_Arr1-D sequence of float
	Array with the Full width half maximuum of of the gaussian
to convolve. 
If FWHM_Arr is a single value, it uses the same value across
the x_Arr range.
If FWHM is a 1-D sequence, a different value of width of
the gaussian is used. In this case, the length of this array
has to be the same as wave_Arr and Spec_Arr.



	same_normoptional bool.
	If true return a line with the same normalization as the input





Output


	new_Line1-D sequence of float
	Spectrum after the convolution










	
funcs.fesc_of_ta_Bicone(ta, CCC, KKK, LLL)

	Anallytic expression of the escape fraction as a function of the
dust optical depth (Gurung-lopez et al. 2019b)

Input:


	ta1-D sequence of floats
	Dust optical depth [no dimensions]



	CCCfloat
	CCC parameter



	KKKfloat
	KKK parameter



	LLLfloat
	LLL parameter





Output:


	fesc1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.fesc_of_ta_Thin_and_Wind(ta, CCC, KKK)

	Anallytic expression of the escape fraction as a function of the
dust optical depth (Gurung-lopez et al. 2019a)

Input:


	ta1-D sequence of floats
	Dust optical depth [no dimensions]



	CCCfloat
	CCC parameter



	KKKfloat
	KKK parameter





Output:


	fesc1-D sequence of floats
	Escape fractions for the input configurations [no dimensions]










	
funcs.gaus(x_Arr, A, mu, sigma)

	Retruns a gaussian evaluated in x_Arr.

Input


	x_Arr1-D sequence of float
	Where the gaussian has to be evaluated.



	Afloat
	Amplitude



	mufloat
	Mean



	sigmafloat
	width





Output


	gauss_Arr1-D sequence of float
	Gaussian










	
funcs.generate_a_REAL_line_Noise_w(z_f, V_f, logNH_f, ta_f, F_line_f, logEW_f, Wi_f, Noise_w_Arr, Noise_Arr, FWHM_f, PIX_f, w_min, w_max, DATA_LyaRT, Geometry, T_IGM_Arr=None, w_IGM_Arr=None)

	Makes a mock line profile for the Thin_Shell_Cont geometry.

Input


	z_ffloat
	Redshift



	V_ffloat
	Outflow expansion velocity [km/s]



	logNH_ffloat
	logarithmic of the neutral hydrogen column density in cm**-2



	ta_ffloat
	Dust optical depth



	logEW_foptional, float
	Logarithmic of the rest frame intrisic equivalent width of the line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’



	Wi_foptional, float
	Rest frame intrisic width of the Lyman-alpha line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’



	Noise_w_Arr1-D sequence of float
	wavelength array where the noise pattern is evaluated.



	Noise_Arr1-D sequence of float
	Noise pattern. Evolution of the noise as a function of wavelength (Noise_w_Arr)



	FWHM_ffloat
	Full width half maximum [A] of the experiment. This dilutes the line profile.



	PIX_ffloat
	Pixel size in wavelgnth [A] of the experiment. This binnes the line profile.



	w_minfloat
	minimum wavelength in the observed frame [A] to use. This matches the minimum
wavelgnth of wave_pix_Arr (see below).



	w_maxfloat
	maximum  wavelength in the observed frame [A] to use. This might not be exactly
the maximum wavelgnth of wave_pix_Arr (see below) due to pixelization.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.





Output


	wave_pix_Arr1-D sequence of float
	Wavelgnth array where the line is evaluated in the observed frame.



	noisy_Line_Arr1-D sequence of float
	Line profile flux density in arbitrary units.



	dicpython dictionaty.
	
	Contains all the meta data used to get the line profiles:
	‘w_rest’    : restframe wavelength of line before reducing quality
‘w_obs’     : wavelength of line before reducing quality
‘Intrinsic’ : line profile before quality reduction
‘Diluted’   : Line profile after the FWHM has been applyed.
‘Pixelated’ : Line profile after the FWHM and PIX have been applyed
‘Noise’     : Particular noise patern used.














	
funcs.generate_a_obs_line(z_f, V_f, logNH_f, ta_f, DATA_LyaRT, Geometry, logEW_f=None, Wi_f=None, T_IGM_Arr=None, w_IGM_Arr=None, RETURN_ALL=False)

	Moves in redshift a line profile.

Input


	z_ffloat
	Redshift



	V_ffloat
	Outflow expansion velocity [km/s]



	logNH_ffloat
	logarithmic of the neutral hydrogen column density in cm**-2



	ta_ffloat
	Dust optical depth



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.



	logEW_foptional, float
	Logarithmic of the rest frame intrisic equivalent width of the line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’



	Wi_foptional, float
	Rest frame intrisic width of the Lyman-alpha line [A]
Requiered if Geometry == ‘Thin_Shell_Cont’





Output


	w_rest_Arr1-D sequence of float
	Wavelgnth array where the line is evaluated in the rest frame.



	wavelength_Arr1-D sequence of float
	Wavelgnth array where the line is evaluated in the observed frame.



	line_Arr1-D sequence of float
	Line profile flux density in arbitrary units.










	
funcs.get_solutions_from_flat_chain(flat_chains, Q_Arr)

	function to get the solution from the emcee sampler sin some given
percentiles.

Input


	flat_samples2-D sequence of floats
	The MCMC chains but flat.



	Q_Arr1-D list of floats
	List of the percentiles that will be computed, for
example [ 16.0 , 50.0 , 84.0 ]





Output


	matrix_sol: 2-D sequence of floats
	The percentiles of each of the 6 properties.










	
funcs.get_solutions_from_sampler(sampler, N_walkers, N_burn, N_steps, Q_Arr)

	function to get the solution from the emcee sampler sin some given
percentiles.

Input


	sampleremcee python packge object.
	Contains the information of the MCMC.



	N_walkersint
	Number of walkers



	N_burnint
	Number of steps in the burnin-in phase



	N_stepsint
	Number of steps



	Q_Arr1-D list of floats
	List of the percentiles that will be computed, for 
example [ 16.0 , 50.0 , 84.0 ]





Output


	matrix_sol: 2-D sequence of floats
	The percentiles of each of the 6 properties.



	flat_samples2-D sequence of floats
	The MCMC chains but flat.










	
funcs.get_solutions_from_sampler_mean(sampler, N_walkers, N_burn, N_steps)

	function to get the solution from the emcee sampler as the mean.

Input


	sampleremcee python packge object.
	Contains the information of the MCMC.



	N_walkersint
	Number of walkers



	N_burnint
	Number of steps in the burnin-in phase



	N_stepsint
	Number of steps





Output


	matrix_sol: 1-D sequence of floats
	Mean of each of the 6 properties.



	flat_samples2-D sequence of floats
	The MCMC chains but flat.










	
funcs.get_solutions_from_sampler_peak(sampler, N_walkers, N_burn, N_steps, N_hist_steps)

	function to get the solution from the emcee sampler as the
global maximum of the distribution of the posteriors.

Input


	sampleremcee python packge object.
	Contains the information of the MCMC.



	N_walkersint
	Number of walkers



	N_burnint
	Number of steps in the burnin-in phase



	N_stepsint
	Number of steps



	N_hist_stepsint 
	Number of bins to sample the PDF of all properties





Output


	matrix_sol: 1-D sequence of floats
	Mean of each of the 6 properties.



	flat_samples2-D sequence of floats
	The MCMC chains but flat.










	
funcs.init_walkers_5(N_walkers, N_dim, log_V_in, log_N_in, log_t_in, z_in, log_E_in, W_in)

	Creates the initial position for the walkers

Input


	N_walkersint
	Number of walkers



	N_dimint
	Number of dimensions (6)



	log_V_in1-D sequence of floats.
	Range of the logarithm of the bulk velocity
log_V_in[0] is the minimum 
log_V_in[1] is the maximum



	log_N_in1-D sequence of floats.
	Range of the logarithm of the neutral hydrogen column density
log_N_in[0] is the minimum 
log_N_in[1] is the maximum



	log_t_in1-D sequence of floats.
	Range of the logarithm of the dust optical depth
log_t_in[0] is the minimum 
log_t_in[1] is the maximum



	z_in1-D sequence of floats.
	Redshift range to be considered. 
z_in[0] is the minimum redshift
z_in[1] is the maximum redshift



	log_E_in1-D sequence of floats.
	Range of the logarithm of the intrinsic equivalent width
log_E_in[0] is the minimum 
log_E_in[1] is the maximum



	W_in1-D sequence of floats.
	Instrinsic line width range to be considered. 
W_in[0] is the minimum redshift
W_in[1] is the maximum redshift





Output


	theta_01-D sequence of float
	
	Contains the parameters of the mode:
	theta_0[:,0] = logarithim of the expansion velocity
theta_0[:,1] = logarithim of the neutral hydrogen column density
theta_0[:,2] = logarithim of the dust optical depth
theta_0[:,3] = redshift
theta_0[:,4] = logarithm of the intrinsic equivalent width
theta_0[:,5] = intrinsic width














	
funcs.load_Grid_Line(Geometry, MODE='FULL')

	Return the dictionary with all the properties of the grid where the lines were run.

Input


	Geometrystring
	The outflow geometry to use: Options: ‘Thins_Shell’,
‘Galactic_Wind’ , ‘Bicone_X_Slab_In’, ‘Bicone_X_Slab_Out’,
‘Thin_Shell_Cont’.



	MODEoptinal string.
	For the ‘Thin_Shell_Cont’ ONLY. Defines the grid to be loaded.
MODE=’FULL’  loads a very dense  grid. ~12GB of RAM.
MODE=’LIGHT’ loads a more sparse grid. ~ 2GB of RAM.





Output


	loaded_modelDictionary
	This dictonary have all the information of the grid.
Entries:


‘V_Arr’     : Array of velocity expansions used.[km/s]
‘logNH_Arr’ : Array of logarithm of the column density. [c.g.s.]
‘logta_Arr’ : Array of logarithm of the dust optical depth.
‘x_Arr’     : Array of frequency in Doppler  units.
‘Grid’      : Array with the output of the RT MC code LyaRT:


loaded_model[‘Grid’][i,j,k,:] has the line profile evaluated in loaded_model[‘x_Arr’]
with outflow velocity loaded_model[‘V_Arr’][i] , logarithm of the neutral hydrogen 
column density loaded_model[‘logNH_Arr’][j] and logarithm of dust optical depth 
loaded_model[‘logta_Arr’][k]
















	
funcs.load_Grid_fesc(Geometry, MODE)

	This functions gives you grids of the escape fraction

Input:


	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’







	MODEString
	Parametrization of the escape fraction. ‘Parameters’ or ‘values’





Output:

loaded_model : file the grid of f_esc parameters/values.






	
funcs.load_machine_fesc(Machine, property_name, Geometry)

	This functions gives you the trained model that you want to use.

Input:


	MachineString
	Kind of algorithm: ‘KN’, ‘Grad’, ‘Tree’ or ‘Forest’



	property_nameString
	The variable to import: ‘KKK’ , ‘CCC’ , ‘LLL’ or ‘f_esc’



	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’









Output:

loaded_model : file with all the necesary to do machine learning






	
funcs.log_likeliehood_of_model_5(theta, w_obs_Arr, f_obs_Arr, s_obs_Arr, FWHM, PIX, w_min, w_max, DATA_LyaRT, Geometry, z_in, FORCE_z=False, Inflow=False, T_IGM_Arr=None, w_IGM_Arr=None)

	Logarithm of the likelihood between an observed spectrum and a model 
configuration defined in theta

Input


	theta1-D sequence of float
	
	Contains the parameters of the mode:
	theta[0] = logarithim of the expansion velocity
theta[1] = logarithim of the neutral hydrogen column density
theta[2] = logarithim of the dust optical depth
theta[3] = redshift
theta[4] = logarithm of the intrinsic equivalent width
theta[5] = intrinsic width







	w_obs_Arr1-D sequence of float
	wavelength where the observed density flux is evaluated.



	f_obs_Arr1-D sequence of float
	Observed flux density



	s_obs_Arr1-D sequence of float
	Uncertanty in the observed flux density.



	FWHMfloat
	Full width half maximum [A] of the experiment.



	PIXfloat
	Pixel size in wavelgnth [A] of the experiment.



	w_minfloat
	minimum wavelength in the observed frame [A] to use. This matches the minimum
wavelgnth of wave_pix_Arr (see below).



	w_maxfloat
	maximum  wavelength in the observed frame [A] to use. This might not be exactly
the maximum wavelgnth of wave_pix_Arr (see below) due to pixelization.



	DATA_LyaRTpython dictionary
	Contains the grid information.



	Geometrystring
	Outflow geometry to use.



	z_in1-D sequence of floats.
	Redshift range to be considered. In principle the redshift can be outside
z_in[0] is the minimum redshift 
z_in[1] is the maximum redshift



	FORCE_zoptional bool
	If True, force the redshift to be inside z_in



	Inflowoptional bool
	If True, fits and inflow instead of an outflow.
Default False. So by default, it fits outflows.





Output


	log_likefloat
	Logarithm of the likelihood










	
funcs.log_likelihood(w_obs_Arr, f_obs_Arr, s_obs_Arr, w_model_Arr, f_model_Arr)

	Logarithm of the likelihood between an observed spectrum and a model spectrum.

Input


	w_obs_Arr1-D sequence of float
	wavelength where the observed density flux is evaluated.



	f_obs_Arr1-D sequence of float
	Observed flux density



	s_obs_Arr1-D sequence of float
	Uncertanty in the observed flux density.



	w_model_Arr1-D sequence of float
	wavelength where the model density flux is evaluated



	f_model_Arr1-D sequence of float
	Model flux density





Output


	log_likefloat
	Logarithm of the likelihood










	
funcs.plot_a_rebinned_line(new_wave_Arr, binned_line, Bin)

	This functions is used to plot line profiles. It transforms the line
line in a histogram.

Input


	new_wave_Arr1-D sequence of float
	Array with the Wavelength where the spectrum is evaluated.



	binned_line1-D sequence of float
	Arrays with the flux of the spectrum.



	Binfloat
	Bin size.





Output


	XX_Arr1-D sequence of float
	Wavelength where the new line is evaluated



	YY_Arr1-D sequence of float
	Flux density array










	
funcs.pre_treatment_Line_profile(Geometry, V_Arr, logNH_Arr, ta_Arr, logEW_Arr=None, Wi_Arr=None)

	Checks the inflow/outflow parameters before doing the proper computation.

Input:


	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’,
	‘Thin_Shell_Cont’











	V_Value1-D sequence of bool
	Outflow bulk velocity [km/s]



	logNH_Value1-D sequence of bool
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Value1-D sequence of bool
	Dust optical depth [no dimensions]



	logEW_ValueOptional 1-D sequence of bool
	Logarithm of rest frame equiavlent width [A]
Default = None



	Wi_ValueOptional 1-D sequence of bool
	Intrinsic width line in the rest frame [A]
Default = None





Output:


	Bool_good1-D sequence of bool
	1 if the parameters are good, 0 if they are bad.










	
funcs.pre_treatment_Line_profile_MCMC(Geometry, V_Value, logNH_Value, ta_Value, logEW_Value=None, Wi_Value=None)

	Checks the inflow/outflow parameters before doing the proper computation.

Input:


	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’
	‘Thin_Shell_Cont’











	V_Valuefloat
	Outflow bulk velocity [km/s]



	logNH_Valuefloat
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Valuefloat
	Dust optical depth [no dimensions]



	logEW_ValueOptinal float
	Logarithm of rest frame equiavlent width [A]
Default = None



	Wi_ValueOptinal float
	Intrinsic width line in the rest frame [A]
Default = None





Output:


	Bool_good1-D sequence of bool
	1 if the parameters are good, 0 if they are bad.










	
funcs.pre_treatment_f_esc(Geometry, V_Arr, logNH_Arr, ta_Arr, MODE)

	Checks the inflow/outflow parameters before doing the proper computation.

Input:


	GeometryString
	
	Outflow configuration to use: ‘Thin_Shell’  , ‘Galactic_Wind’  
	, ‘Bicone_X_Slab_In’ , ‘Bicone_X_Slab_Out’







	V_Arr1-D sequence of floats
	Outflow bulk velocity [km/s]



	logNH_Ar1-D sequence of floats
	logarithm of the neutral hydrogen column density [cm**-2]



	ta_Arr1-D sequence of floats
	Dust optical depth [no dimensions]



	MODEoptional string
	
	Set the mode in which the escape fraction is computed. It can be:
	Analytic        : it uses an analytic equation fitted to the output of the RT MC code.
Parametrization : it computes the escape fraction using a function that depends on the


dust optical depts as in Neufeld et al. 1990.




Raw             : it uses directly the output of the RT MC code.

Default = ‘Parametrization’

Kind of algorithm: ‘KN’, ‘Grad’, ‘Tree’ or ‘Forest’









Output:


	mask_good1-D sequence of bool
	1 if the parameters are good, 0 if they are bad.
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As the package has not been published on PyPi yet, it CANNOT be install using pip.
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